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ABSTRACT

This report presents the results of analysis of satellite signal

characteristics as influenced by ocean surface roughness and an inves-

tigation of sea-truth data requirements. The first subject treated is

that of post-flight waveform reconstruction for the Skylab S-193 radar

altimeter. Sea-state estimation accuracies are derived based on analytical

and hybrid computer simulation techniques. An analysis of near-normal

incidence, microwave backscattering from the ocean's surface is accomplished

in order to obtain the minimum sea-truth data necessary for good agreement

between theoretical and experimental scattering results. Sea-state bias

is examined from the point of view of designing an experiment which will

lead to a resolution of the problem. The report concludes with a discussion

of some deficiencies which were found in the theory underlying the Stilwell

technique for spectral measurements.
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CHAPTER 1

INTRODUCTION AND SUMMARY OF RESULTS

1.0 SCOPE OF THE REPORT

This report presents analyses of several technical factors related

to geodetic altimetry. The categories which are covered comprise radar

systems analysis, electromagnetic scattering analysis and investigation

of sea truth measurement techniques. This study is largely motivated by

requirements for experiment planning, development of post flight data

processing methods, identification of potential sea-truth acquisition

methods, and to yield a better understanding of the measurement charac-

teristics of the two presently planned NASA geodetic satellite programs:

the Skylab S-193 radar altimeter and the GEOS-C satellite.

Chapter 2 of this report examines the errors which arise from measure-

ment process uncertainties, characteristics of the altimeter sampled data,

considerations of the ground-based waveform reconstruction, and computational

aspects of sea state extraction in a short pulse radar system. Details of a

hybrid computer simulation of sea scattering and the geodetic altimeter system,

upon which much of the results cited in Chapter 2 are based, are also given.

Chapter 3 examines the theoretical characteristics and sea-truth require-

ments of an experiment to investigate near-normal incidence, microwave back-

scattering. Specifically, the relationship between the ocean surface wave-

number spectrum and the radar cross-section per unit scattering area, a , is

calculated via the physical optics integral. We initially investigate ao as

a function of surface wave height or wind speed and then determine the ocean

surface wavenumber range which provides the major contribution to ao for

isotropic, equilibrium ocean spectral conditions. Finally, the effects of

ocean spectral anisotropy are considered.

Chapter 4 first examines the sea state bias problem, i.e.,the difference

that may exist between the radar observed wave height distribution and the

true geometrical distribution. The characteristics of several currently used

techniques for obtaining oceanographic information, especially as they relate

to the bias problem, are then investigated. These techniques include near-

surface radar measurements, sterographic photography, and the Stilwell method

for obtaining ocean spectral information.
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1.1 Conclusions and Recommendations

The following paragraphs provide a concise summary of the principal

findings of this study. The interested reader is encouraged to examine

the detailed conclusions contained in each section.

(1) The S-193 system is found to be capable of distinguishing ocean

surface roughness values of 1/2 meter rms from values of 1 meter,
for a data accumulation period of "10 seconds. In Significant

Wave Height (H1/3) units the corresponding figures are: 6.6 feet

and 13.2 feet. For rougher seas the situation improves; a change

of 3.3 feet may be distinguished for seas of 26.4 feet SWH (2 meters

rms). These results indicate that major sea-state experimentation

with the S-193 system should emphasize ocean areas characterized

by rough seas, such as the North Atlantic. In the mid-latitudes

it is possible that surface roughness changes during experimental

periods will not be resolvable.

(2) We find that characteristics of the S-193 waveform and altitude

data sampling processes are important contributors to the total

system response, and ground based data processing techniques

should be developed based on intimate knowledge of these hardware

characteristics. For future satellite systems, we recommend

sampling rates of at least four times the reciprocal pulse length

with commensurate aperture periods. For 10 ns experiments this

entaiLan advance-mnt in the sampling art, ini view of the power and
size constraints present. More extensive altitude data sampling

is required for systems in which sampling events are tied to the

altitude tracker circuitry, for unambiguous data reconstruction.

There are, at present, two information deficiencies relative to

development of experiment software: measurements are needed on

the S-193 hardware to (1) describe the differences between the

sample-and-hold positioning functions and the altitude data output,

and (2) provide information relative to the impulse response of the

entire system including the sampling functions. A z-transform com-
putational method is given which will allow derivation of the radar
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observed wave height distribution from altimeter waveform information.

Considerably more work remains to be done in regard to waveform re-

construction, because of the appreciable quantization noise present

(which implies that the problem is not strictly one of classical

sampled data reconstruction).

(3) Using a physical optics theory for 3 cm rf wavelength scattering

at normal incidence from an ocean described by a Phillips type

of equilibrium spectrum, it has been found that ao depends heavily
-i

on surface wavenumbers in the range .001 - 1.0 cm , or ocean

surface wavelengths of .06 - 60 meters, for surface winds < 14 knots.

This means that any ao experimentation must include acquisition of

gravity wave-range spectral information, not the often-assumed

capillary range, as sea-truth data for a experimentation. The

analysis also predicts negative results for ao vs. wind speed

experiments since a saturation effect is found in the normal incidence

case, similar to the effect noted by Guinard for scatterometer

geometry. The Skylab a0 experiment should provide a most valuable

data base for this effect. Near-normal incidence scattering is found

to be very insensitive to spectral anisotropy.

(4) Chapter 4 presents our interpretation of the nanosecond radar obser-

vations of Yaplee, et al. which indicates that the backscattering

cross-section of the ocean's surface increases in a nearly linear

fashion with increasing distance below the wave crests. We also

discuss other methods of obtaining information related to the bias

problem, particularly those which will shed light on the physical

mechanism giving rise to the sea state bias effect. We conclude

that only stereo photographs or a moving profilometer can acquire

the desired information, and the laser profilometer is the more

promising of these. Finally, our investigation of the Stilwell

technique encountered several deficiencies in the theory under-

lying the method. For example we find that a false directionality

exists in the derived spectrum. Because of these deficiencies we

feel that the Stilwell technique should not, at present, be used as

a primary source of sea-truth information.
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CHAPTER 2

ANALYSIS OF THE CHARACTERISTICS OF ALTIMETER WAVEFORM

INFORMATION AND DATA PROCESSING CONSIDERATIONS

2.0 GENERAL DISCUSSION OF THE OCEAN SURFACE RESOLUTION CAPABILITIES OF

THE SKYLAB ALTIMETER

The objectives of this chapter are to provide information needed in

developing ground processing techniques for the Skylab S-193 waveform ex-

periments and to provide guidelines for the GEOS sampling problem. Speci-

fically the problem of measurement of ocean surface roughness through the

dependence of the received altimeter wave shapes upon ocean surface roughness

conditions is considered. In this discussion, it will be assumed that the

reader is generally familiar with the impulse response or waveform method of

surface roughness estimation [1]. Also, the terms "sea state" and "surface

roughness" will be used interchangeably, although it is recognized that sea

state is not a precise term. For cases in which quantitative descriptions are

needed, the terms "rms surface roughness" will be used. In the analysis, both

closed form and hybrid computer simulation results will be utilized. Details

of the computer simulation are given in section 2.3.

The principal problem areas to be considered in the impulse response

measurement process are as follows:

(a) The fluctuating received waveform requires that .a large number of

individual waveforms must be averaged in order to estimate the

ensemble-mean waveform. Because of the limited number of waveforms

available per unit time and the limited region over which the ocean

surface can be regarded as homogeneous, the sea state measurement

process represents an attempt at estimating waveform fine structure

which is on the same scale as the uncertainty arising from the finite

averaging process. This problem is illustrated by the data shown in

Figure 1 and Figure 2. Figure 1 shows a Skylab waveform which

was obtained by averaging 100 individual waveforms. Figure 2

contains an overlay of five independently averaged waveforms, each

consisting of 100 sample averages.

(b) Altimeter hardware constraints are such that sampling operations and

bandpass characteristics significantly affect the waveform resolution
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Reproduced from
best available copy.

Figure 1. Signal only, single 100 sample case

Figure 2. Signal only, 5 independent 100 sample cases

Simulated mean waveforms obtained by averaging 100 individual waveforms

(simulated sweep rate 2.5 ns/cm).
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achievable. If the received waveforms are not adequately and

reliably sampled, no degree of ground-based reconstruction can

overcome this deficiency. As will be obvious in the following

text, detailed knowledge of the system characteristics is required

to support even qualitative estimates of ocean surface roughness

resolution achievable with radar altimeters.

This chapter is organized in the following manner. The problem of re-

constructing the time of occurrence of the waveform sampling events is first

considered. In the S-193 system the sample functions are not fixed in time

and the problem is to determine the extent to which the instantaneous sample-

and-hold positions can be determined from the post-flight data. Next, char-

acteristics of the zero sea-state response of the S-193 system are examined

and this informatin is used to identify appropriate waveform reconstruction

algorithms, estimate sensitivity of the sea state measurement process, specify

experimental conditions matched to instrument capabilities, and examine data

processing requirements.

2.1 Position Uncertainty of S-193 Waveform Sample Values

This section considers details of the waveform sampling process and

discusses the S-193 system in the following context:

(1) Since the sample-and-hold circuits are positioned by the altitude

tracking loop, what is the variance of the gate positioning process?

(2) What is the granularity of the gate positioning function?

(3) What is the expected location of the waveform leading edge relative

to the sample-and-hold array? Over a typical sea-state experiment

interval (approximately 10 seconds) will a significant percentage

of the sample-and-hold measurements be outside the waveform region

of interest (the signal "rise-time" region)?

(4) To what extent can the instantaneous sample-and-hold positions be

defined in post-flight data?

Answers to these questions will permit specification of the effective number

and spacing of the sampling events per unit time.
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Beginning with category (1) above, a block diagram of the S-193 altitude

tracking loop is shown in Figure 3. Note that the sample-and-hold circuits

are positioned by the tracking gate generator and that altitude jitter in the

tracking loop will result in corresponding positional jitter in the sample-and-

hold circuit. Also note that the altitude data is sampled at approximately 8

per second (128 ms spacing), and that the altitude accumulator outputs the

arithmetic average of the values over the 128 ms period. In the actual system,

the tracking loop effectively averages over the returns from 4 pulses, and the

accumulator then averages over the 8 groups of 4-pulse averages contained in

the 128 ms time period. Assuming that the altitude accumulator is cleared

after each sampling operation, each altitude sample constitutes a moving window

average of the tracker excursions. These samples can then be filtered (although

they are statistically dependent, due to the loop filter) to yield altitude data

averaged over some other time interval such as a one second interval. The

standard deviation of the sample-and-hold position jitter, at (or, equivalently,

the tracking error), may be estimated for the S-193 by the equation

a= T 7 6 8
t ---- 6 + + (1)

R__ SNR

where T = width of early and late gates

SNR = signal to receiver IF noise ratio

PRF = pulse repetition frequency

B1 = 3 db closed loop bandwidth,

and from other data, given in Ref. [2]. These data are summarized in Table 1.
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Figure 3. Block Diagram of S-193 Altitude Tracker.



TABLE 1

Comparison of Altitude Tracker Error Estimates

Source SNR at

Equation 1 10 db 21.5 ns

Equation 1 20 db 18.0 ns

GE tracking loop simulation >20 db 17.4 ns

S-193 hardware >20 db 13.4 ns

The theoretical value and tracking loop simulation results in Table 1

are seen to be in good agreement. There is considerable disparity, however,

between these two values and the hardware measurement. The initial reaction

to this comparison might be to suspect the hardware measurement process -(e.g.,

the sea state simulator), since the measured values are seen to be less than

the theoretical estimates. However, the possibility of modeling deficiencies

in the other results should not be discounted. The tracking loop simulation

represents a digital simulation of the tracking circuitry only. In the absence

of better information, the more conservative value shown in Table 1 will be

used in subsequent discussions.

A somewhat smaller data base is presently available for use in estimating

tracking jitter for 10 ns operation. Preliminary measurements by General

Electric, Utica, New York, show the standard deviation of the tracker to be

approximately 5 ns for 10 ns operation compared to the 13.4 ns standard deviation

for 100 ns pulses (both for an SNR ' 20 db). Computer simulations of the two

subsystems in Figure 4 have been conducted during.this study, utilizing the

fact that the video bandwidth and tracker gate widths remain at 5 MHz and 100 ns

for the S-193 operating with either a 10 or 100 ns pulse length. The results

show that altitude error is reduced by a factor of 3 for the 10 ns case compared

to the 100 ns case, for an identical tracker and video amplifier in both instances.

The theoretical improvement for a 10 ns system with a 50 MHz video amplifier and
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Sea-scattered f ± 5 MHz 5 MHz 100 ns gates

100 ns IF Amplifier Detector ideAmpo S tracker

pulses

L.O.

(A) 100 ns System

Sea-scattered f ± 50 MHz 5 MHz 100 ns gates

10 ns IF Amplifier ] Detector Amp tracker
Amp tracker

pulses

L.O.

(B) 10 ns System

Figure 4. System parameters utilized in comparison of 10 and 100 ns altimeter variance.



10 ns tracking gates would be 10 to 1 (if SNR changes are ignored or for SNR
> 20 db). The 3:1 improvement in tracking jitter for the 10 ns case is ob-
viously due to the much wider predetection bandwidth and transmitted pulse
spectrum.

Before leaving this subject, note that the above data suggest the
possibility that appreciable improvement in altimeter performance may be
obtainable with IF and video amplifier characteristics selected on bases other
than the usual radar rule of thumb (inverse pulse length relationship). It
should also be noted that the improvement in tracking error for the S-193
10 ns case is not within the scope of present closed-form results. The prin-
cipal limitations of these formulations arise from the approximate expressions
used to represent bandwidth characteristics, particularly the IF amplifier,
because of the mathematical intractability of complete system pole-zero de-
scriptions. Histogram results to be shown in a later section of this report
demonstrate the extent to which filtering operations affect altitude tracking
error. For these reasons it is felt that the hardware measurements and system
simulation results are more reliable than existing closed-form altimeter error
estimates.

Based on the above discussed data, in the remainder of this report the
sample-and-hold position jitter for 10 ns waveforms will be assumed to possess
a standard deviation of 5 ns for the pulse compression case and 7 ns for the
noncompressed case which will operate at lower SNR values. The tracking jitter
will be assumed symmetrically distributed about mean-value. Granularity of the

sample-and-hold positions is 5 ns since the digital delay generator is limited
to delay increments of 5 ns [2]. It is fortunate that the sample-and-hold
circuits are continuously positioned by the tracking gate circuits and not fixed
during the experiment period, because of the sparse sampling pattern that exists
in the S-193 hardware. Otherwise the sample rate would be equal to the sample-
and-hold spacing of 10 ns, which would seriously degrade waveform reconstruction.

The next factor to be considered is the configuration of the eight sample-
and-hold (S & H) operations relative to the expected position of the ramp portion
of the returned signal. For a 10 ns waveform measurement only DAS 2 and DAS 3
of mode 5 are available. The expected position of the tracking gates, the mean
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waveform, and the sample and hold array is shown in Figure 5. If finite

antenna beamwidth effects on tracker bias in the 10 ns pulse length are taken

into consideration, the gate positions will shift in the direction of early

timing. Based upon available data concerning split gate tracker basis, the

mean tracking position is estimated to shift approximately 25 ns, primarily

because of the weights used in the split gate tracker. This location is

shown as the dotted curve in Figure 5. On this basis, the ramp portion

of the 10 ns measurements will contain an average of one sample position.

That is, the shifted waveform shown in Figure 5 indicates that the

position of the leading edge of the return pulses will occur at the break

point between the first and second sample array position. This location is

undesirable from the standpoint of sea-state or waveform measurements since

sample-and-hold values recorded from the next position of the sampling array

are not commensurate (oceanographic conditions cannot be assumed constant

over the needed time period). For sea-state measurements, a figure of 10

seconds will be used in this report as a maximum period in which ocean surface

homogeneity can be assumed. This represents a footprint expanse of approximately

50 kilometers.

Overall characteristics of the sampling operations available in the S-193

hardware which have been covered to this point are summarized in Table II.

TABLE II

S-193 Sampling Parameters for 10 Nanosecond Operation

RMS Position Jitter 15 ns

Sample-and-Hold Spacing 10 ns

Position Granularity 5 ns

Sample Type 10 ns gate length with
5 ns RC time constant

Waveforms Sampled per Second 100

Approximate Number of Times per Second
a 5 ns Locations is Sampled 50

Tracker Loop Bandwidth 2 Hz at 3 db
1.3 Hz Crossover
3.2 Hz Noise Bandwidth
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Noise Gate Early Gate Late Gate

position 2 3 6
references

IOns return -I - l00ns mean return
shifted by probable I
tracker bias
(25ns) 10ns return

Mode V
DAS-3 III

4 sample array
positions

8 S&H values/array

4 array positions

50 return samples/frame = 48 samples/sec.

i50 returns/sec.--+62.5 tracker updates/sec.

= 7.82 altitude samples/sec.

t digital delay gate

Figure 5. Estimate of sample-and-hold positions relative to mean waveforms
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As the final topic of this section, we consider the degree to which

sample and hold positions can be ascertained in post flight data, and the

effectiveness with which the sampling procedure on S-193 describes the

altitude tracker excursions. Since the waveform sample values are subject

to positional jitter identical to the altitude tracker, ground processing

for waveform reconstruction must rely on sample location information derived

from the N8/sec. altitude samples available in the post-flight data. Figure

6 provides a graphical illustration of this problem; these data show that

the tracking loop excursions between sampling events can be quite significant

and that some form of tracking error reconstruction is certainly desirable

in the 100 ns modes.

Referring to the altitude tracker block diagrams previously shown

(Figure 3); the tracker must, in general, be regarded as nonlinear because

of quantization characteristics of the digital delay generation (DDG). For

operation with 100 ns pulse lengths, we found the altitude process standard

deviation to be approximately three times larger than the step-size of the

DDG, and to first-order may be represented by a linearized model. For

operation with 10 ns pulse lengths the tracking jitter was found to be essentially

equal to the DDG granularity (5 ns). For this case the tracker non-linearity

cannot be neglected: it may in fact behave essentially as a Bang-Bang control

system [3].

We may estimate characteristics of the tracking error data available in

the 100 ns case as follows. The closed loop response of the altitude tracker

is taken to be [2]

70 jw + 280HF(W) 2
8 2 + 71 jw + 280

and arithmetic averaging effects of the altitude accumulators is represented

as a time-domain rectangular impulse response (or moving window) which has the

transfer function

2-11



so-

-3.

-tU1 IN MI LLISECOp.SX

Sample result for simulation of the 100 ns case, tracking error from [2].

Typical sampling events are shown as arrows on the abcissa.

(1.3 Hz loop crossover frequency).

Figure 6. Examples of S-193 Altitude Tracking Error
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H M sin (rT/2)
A wir/2

where T = 128 ms. Figure 7 shows magnitude graphs of these transfer

functions and fold-over effects resulting from the sampling operation.

Note that whereas it is desired to reconstruct the behavior of the altitude

tracker, only the filtered replica is available. Also, the ~'8Hz sampling

rate is seen to be of questionable adequacy for the tracking filter bandwidth

present. As discussed in Ref. [4], an upper bound on the aliasing error may

be taken to be twice the spectral area above the Nyquist frequency of the

sampler. On this basis we calculate the aliasing errors to be >50 percent.

In summary, engineering considerations indicate that sample-and-hold

position data may not be derivable between sampling events from post flight

data in the 100 ns case. That is, the %15 ns rms position jitter may not be

reducible by post flight methods. For the 10 ns case, the system is strongly

nonlinear and analytical methods of nonlinear control systems [3] appear most

unpromising. We intuitively feel that the 10 ns data can be reconstructed to

significantly better precision than the 100 ns data. However, this topic is

largely an open problem and the most fruitful approach to its resolution is

considered to be measurement of actual system statistics. The system measure-

ments recommended comprise Monte Carlo simulations (using the S-193 engineering

breadboard) of the variance of the difference between the altitude data output

and the sample-and-hold positional information.
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2.2 WAVEFORM RECONSTRUCTION

The factors to be considered in this section are:

(1) characteristics of the zero sea-state system response up to

and including the sample-and-hold operation,

(2) waveform reconstruction considerations and detail contained

in the reconstructed waveforms, and

(3) sensitivity and limitations of reconstructed waveforms in

regard to sea-state measurement considerations.

Figure 8 is a block diagram of the altimeter characteristics to be

initially investigated in this section. The immediate discussion will be

concerned with power spectral density (PSD) characteristics of the altimeter

signal and the sampling operations in order to permit specification of re-

construction filter requirements. The PSD computations are based on a time-

invariant power spectrum, such as approximately exists in the plateau region

of the 10 ns altimeter waveforms. Referring to Figure 8, the spectrum of the

zero sea-state altimeter signal is taken to be the transmitted pulse spectrum;

and it is assumed that the linear scattering process will randomize phase of

the returned signal but will not alter the transmitted spectral shape (this

is discussed in detail in section 2.3). The power spectral density function

of the back-scattered signal s (w) is assummed to be of the form

sin2 [- (w- )
2 (W-Wo)] 2

where wo is center frequency and T is pulse length. This power spectral

density function will then be shaped by the transfer function of the IF

amplifier which will be described as a three-pole maximally-flat filter

whose magnitude function is
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Figure 8. System components pertaining to the reconstruction problem.



2H IF() 2 6

1+

where w 3 is the 3 dB radian bandwidth. The spectral density at the output

of the detector D(w) may be found from the convolution [5]

D(w) = 2a { IF(W) * -(W) D F(W D(w)IHIF) 2

which for purposes of numerical evaluation is expressed as

S2sin2 ( i n) sin2 3 (W - n)2 2

( n) (a ) 1 + n

3

_n6 dn + 2 o 4 6(w)

1+ 6

And finally, effects of the video filter are taken into account through use

of a 2-pole maximally-flat expression

0v(w) W =2aIHv(W)12  F(W) * IF(M)}

where

IV(w) 12 1
1 + ( r)

W3

in which w' is 3 dB radian bandwidth of the video filter.
3

The results of these computations, given in Figure 9, show that the

detection operation considerably broadens the one-sided IF spectrum. How-

ever, the video filter operation results in a composite spectrum that is

similar to the shape of the IF spectrum. This analysis will next be extended

to include averaging properties of the sample-and-hold operation.
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The averaging properties of the sample-and-hold operation derive from

the five nanosecond RC time constant and the 10 ns gate period contained in

the sampling operations [2]. As shown in Appendix A, this effect is repre-

sentable as a single pole filter with a corner frequency of 50 MHz.

Figure 10 shows the composite spectrum which results from passing

the video signal through the sample-and-hold averaging operation and then

through a sampler function. The effect of the sampling operation is to

cause the spectrum to be repetitive at 100 MHz intervals. Figure 10 also

shows the extent to which the video signal is aliased. Variance of the

aliased (or folded-over) component can be obtained as in the previous section

by integrating the sampler power spectral density (Figure 10) over the

bandpass of the reconstruction filter, for both the fundamental and aliasing

component. Variance of the aliasing component has been found to be approximately

four percent of the signal variance. A surprising result in this figure is that

the 3 dB bandwidth of the composite system function occurs at approximately 30

MHz. The averaging operation contained in the sample-and-hold circuit is there-

fore seen to be an important factor in overall system response. As shown in

Appendix A, the composite response of the IF, video, and sampler weights is

represented to good approximation by the equation

IH(w) 2

+ 2 [ +

where 50 refers to breakpoints at 50 MHz. This result will be useful in a

later section.

The analysis has now reached the stage of waveform reconstruction.

Previous paragraphs have shown that standard deviation of the sample-and-hold

positions will be fixed by the split tracker error signal. Position granularity
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Figure 10. Spectral characteristics of the sampled waveforms



is known to be 5 ns. Thus a single waveform will be sampled at spacings of

10 ns and position jitter will result in composite waveform samples occurring

at 5 ns increments. Without specific data on the position jitter distribution,

it is assumed that the 0 and 5 ns displacements will be equiprobable. There-

fore the central portion of the waveform being sampled will be subjected to

100 sample-and-hold array operations per second or approximately 50 samples/

second spaced 5 ns apart.

For purposes of this analysis, a digital reconstruction filter has been

implemented which consists of a (sin x)/x impulse response over the time

expanse of the sample operations. The reconstruction filter and related con-

siderations are given in section 2.3.

In reconstruction simulation, the individual random waveforms are first

sampled by an array of 8 sample-and-hold operations. Each sample consists of an

exponentially weighted value over a 10 ns window, as does the S-193 sampler.

Figure 11 is an oscilloscope photograph of the digitally generated sample

pattern; this presentation was obtained by sampling the deterministic waveform

shown as the solid trace. In the reconstructed waveforms to be shown sub-

sequently, the samples were obtained using the sample positions shown in Figure

11 with alternate sample locations displaced the scaled equivalent of + 5 ns,

to simulate positioning jitter in ~e S-193 system. Figure 12 shows the rise-

time characteristics of the truncated exponential filter as the locus of the

maxima of the sampling events. The solid trace is the input to the sampler.

Sample rate in Figure 12 is much higher than the hardware rate to show wave-

form detail.

Figure 13 shows a rather interesting effect of the (sin x)/x recon-

struction process. Referring to this figure, photograph (A) shows the re-

constructed waveform based on 16 samples spaced by 5 ns, or for a ramp wave-

form defined over 80 ns (including gate time) and, in effect, assumed to be

zero outside the data region. The (sin x)/x filter exactly reconstructs the

waveform at the sample points (every 5 ns), but the artificial truncation

caused by the finite sample values causes a distortion akin to the Gibbs

phenomenon of Fourier transform theory. In photograph (B) the data span has
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Figure 11. Photograph of exponentially weighted sample pattern

(simulated sweep-rate 10 ns/cm)

Figure 12. Rise-time characteristics of the exponentially weighted

sampler
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been extended by extrapolating the plateau values out an additional 12 sample

values.* In other words, 32 samples (over 160 ns) were used with the first

and last two or three samples taken as zero. Photograph (B) shows the re-

constructed waveform (the discontinuous trace) to still contain ripples due

to the waveform truncation discontinuity. In photograph (C) a reconstruction

algorithm is used which does not contain a waveform discontinuity; two values

before the arrival of the waveform are taken, the waveform is sampled for

60 ns, and these same values are then reflected over the next 80 ns. This

results in a symmetrically extrapolated waveform as an input to the recon-

struction filter, which is free of discontinuities. This technique is found

to be a considerable improvement over the first two results. Photograph (D)

is a reproduction of the data shown in (C) using a higher sweep rate (5 ns/cm).

Sea-state resolution achievable with the Skylab altimeter has been studied

using the computation techniques shown in Figure 14. Two classes of compu-

tations are used: Monte Carlo simulations of the waveform fluctuation statistics

for different SNR values, and deterministic computation of the waveform effects

due to ocean surface roughness. These two will be described in turn, and their

results used to estimate the number of waveform samples needed for a given sea-

state resolution.

The fluctuation statistics were studied by using a 100-bin histogrammirg

program to examine the waveform at a single point in the plateau region; the

histograms obtained are of the video waveform and since the reconstruction

process reproduces exactly the sampled values, the histograms consequently

include all system behavior up to and including the reconstruction. Results

for a series of 5000-sample, 100-bin histograms are given in Table III below,

for specified simulated bandwidths.

*Photograph (B) also shows the ramp signal prior to sampling (solid trace).
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SEA-STATE SIMULATION PROCEDURE

MONTE CARLO

Analog ( Digital >

Flat-Sea
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DETERMINISTIC

Analog Digital Analog

"Mean" flat A/D Gaussian

sea video Digital sea-state

waveform Storage convolution - TAPE

slow time
D/A

D/A
Reconstruction
and display

Digital

Figure 14. Sea-State Simulation Procedure.
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Table III. 5000-sample histogram.results for sampled data in

the plateau region of simulated radar return wave-

forms for 10 ns pulse.

IF bandwidth Video bandwidth SNR Sample type Population standard deviation
Smean signal

±50 MHz 50 MHz 10db 10 nansec. sample- .469
and-hold, 5 nanosec.
RC time constant

±50 50 20 10 nanosec. sample- .439
and-hold, 5 nanosec.
RC time constant

±50 50 c 10 nanosec. sample- .433
and-hold, 5 nanosec.
RC time constant

+50 50 0 single point sample .549

±100 50 c single point sample .479

±50 12.5 c single point sample .497

Plotting histogram results vs. the midpoint of each bin produces an
estimate of the unnormalized probability density function for the parent
population. By appropriately scaling the horizontal (sampled voltage level)
axis we set the mean value to unity; then dj.usting the vertical axis
(frequency of occurrence) so that the area under the curve is unity, we
obtain the normalized probability density function. Cumulative area under
the curve then gives the probability distribution function, and Figure 15
displays both the density and distribution functions so obtained for the
third and fourth entries in Table III.

Obviously, the processes are non-Gaussian. However, the quantity of
direct interest is the mean of a number n, of independent waveform samples
and the central limit theorem guarantees that the distribution of these

2-26



7,0

1.0 T

]MI

0.5,

1.0 2.0 0 5.
A) Single-point sample, noise-free case

1. ofj

LL I

j :

0.0

1.0 2.0 30 4.0 5.0
B) 10 nanosecond simulated sampl, noise -free case

Figure 15. Probability density and distribution functions
as derived from 100-bin histograms of 5000 waveforms
sampled in the plateau. The results have been
rescaled so that the mean is 1.00.
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means will be very closely Gaussian, with a standard deviation obtained by

dividing the last column in Table III by iin. For the resolution example to

be presented below, the 10 db SNR, 10 nanosecond gate result will be used,

for which the ratio [(standard deviation of mean) + mean] is 0.469Yn.

For the deterministic computation of sea-state effects on waveforms,

the effective radar-sensed surface height distribution p(z) is assumed to

be Gaussian. The mean flat-sea video waveform is sampled at equivalent

5 nanosecond intervals by 10 nanosecond wide sample-and-hold gates having

a 5 nanosecond RC time constant, and these sample values are processed

through the reconstruction filter. The filter output (a series of steps

from the D/A converter on the digital computer) is convolved with the

Gaussian (at the analog computer) to obtain an estimated reconstructed

rough-sea waveform for comparison with the flat-sea case. This has been

done for four different rms roughnesses and the results are displayed in

Figure 16. The discontinuous curves in Figure 16 are the flat-sea

waveforms, identical in the four photographs and appearing different only

because different arbitrary horizontal (time) scales were used in the 'scope

photographs. Note that the process here described has the reconstruction

and convolution operations interchanged relative to the scheme shown in

Figure 14; the errors are expected to be small in this interchange and

this should provide at least reasonable estimates for the assumed Gaussian p(z).

Sea-state measurability is related to the vertical distances between the

curves for flat-sea and rough-sea, and these distances were measured on the

photographs in Figure 16 by defining a standard time T at a point where

the vertical differences are close to maximum, Tm is defined as the point at

which a straight line drawn tangent to this flat-sea curve at its half-height

point reaches the maximum or plateau value. This definition requires that the

flat-sea and rough-sea curves are adjusted to the same amplitude and that their

half-height points coincide, as is the case in Figure 16. From vertical

distance measurements on the photographs at Tm, Table IV is derived.
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Table IV. Sea-state effects on deterministic waveforms

Ocean surface 1
roughness (flat sea)-(rough sea) measured Differences in

H1/3 ft rms meters (flat sea) ' at Tm second column

6.6 ft 1/2 meter .075
.034

13.2 1 .109
.141

26.5 2 .350
.096

39.8 3 .346

The third column in the table is obtained from differences in the

second column entries and indicates resolution necessary to separate one

sea-state range from another. For example, to distinguish between sea-

state > 2 meters and sea-state < 1 meter, the table indicates that reso-

lution of the reconstructed sampled wave at Tm be at least 0.141. It

would be necessary that this be 2a ; thus a is about 0.07 and can be
x x

compared to the 10 db SNR result from Table III (0.469//n) to find n, the

number of independent waveform samples required. The result is that a

minimum of 45 independent waveforms are required to determine whether the

sea-state is > 2 meters or is < 1 meter. A similar exercise predicts that

a minimum of %760 waveforms is required to distinguish sea-state < 1/2

meters from sea-state > 1 meter. An extension of this procedure will produce

estimates of the number of waveforms required for any given sea-state reso-

lution in the Skylab case, and a similar procedure should be used in specifying

GEOS parameters.

2.2.1 Computational Aspects of Post-Flight Sea-State Measurement

As shown in Reference [1], ocean roughness effects on the ensemble mean

detected waveform eo(t) are representable by the equation
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eo(t ) = p(z) f(t - z) dz (2)

where p(z) is the radar waveheight distribution and f(.) is the smooth-sea

mean waveform which is known from pre-launch measurements, analytical estimates

and/or orbital measurements. In the smooth-sea case p(z) = 6(t) and the system

description f(.) is obtained directly since e (t) = f(t). The system response

analysis given in section 2.2 will be used in this section to define f(t). The

system response up to the sampling operation was seen to be representable as a

linear transfer function H(s) of the type

H(s) = 1 + 2 s + s 2  (+ s (3)
S50 50 50

and the reconstructed "flat-sea" response was shown to be closely approximated

by the above function and a ramp excitation. Therefore the convolution equation

t

e (t) = p(z) f(t z) dz (4)

t _

observed waveheight known a priori

quantity distribution
to be determined

is recognized to be a first-order integral equation for the unknown quantity

p(z). Its solvability by classical (and numerical) means is dependent on the

form of kernel f(') chosen. In the case of continuous functions, it is a

Volterra equation of the first kind which may be converted to the more tractable

second kind by differentiation [6]. It can then be solved by the classical

method of successive approximation, which for an exponential kernel (which arises

from the finite-pole system description) should lead to a sunmable, closed-form

result. Also for an exponential kernel, it cannot be converted into a finite
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order differential equation problem. In any case, the available S-193 data

will be in sampled form and we expect to utilize digital computer methods;

both of these factors strongly suggest the use of z-transform methods. In
the remainder of this discussion, we will outline such a solution.

For computational convenience we will assume that the measured parameter

e (t) has been normalized by pre-processing to remove the noise base line

(to be discussed in Section 2.3.2). To begin, previous discussions have

shown that f(t) may be approximated by a ramp input to the cascade combination
of a 2-stage RC filter with a 3 dB bandwidth of 50 MHz, followed by a single
stage filter (to represent the exponential sampler weights) also with a 50 MHz,
3 dB bandwidth. As such, the transform of T(t) is taken to be

F(s) = 1 e -Ts 1
s2 s2 (s + a)(s + b)2  (5)

in which the first term on the right in parentheses represents the ramp (of
expanse T) and the remaining terms the transfer function H(s). By partial
fraction methods, F(s) can be rewritten as

F(s) = (1- e Ts) + B + + (6)s 2 s+a s+b 2(s+b)
s (s+b)

in which

A (2a+b)

a2b 3

ab
1

2 2
a (a-b)

D = + (2a-3b)

b (a-b) 2

and E =- 1

b (a-b)
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This can be inverted to yield a time domain form f(t),

f(t) = U(t) [A + Bt + C e-at + De-bt + Ete-bt

(7)

- U(t-T)[A + B(t-T) + Ce-a(t-T) + De-b(t-T) + E(t-T)e-b(t-T)

where U(-) is the unit step.

Note that thus far we have tacitly assumed that all quantities of the

integral equation are Laplace transformable. If p(z) is taken as non-zero

for both positive as well as negative z, we will be forced to use a much

more complicated bilateral transform. Recognizing that the sampled data is

accurate to about 1% (due to bit size and other factors) suggests that the

time basis can be shifted to avoid bilateral transforms. To show this first

write the previous equation in abbreviated form as

f(t) = fl(t) U(t) - fl(t-T) U(t-T)

for which

eo(t) = p(z) [fl(t-z) U(t-z) - fl(t-T-z) U(t-T-z)] dz (8)

which is equivalent to

t t-T

eo(t) = p(z) fl(t-z) dz - f p(z) fl (t-T-z) dz

Therefore if p(z) can be represented by a function which is truncated at some

negative z, then a shifted variable z' can be used such that p(z') = 0 for z'

< 0 and the integral equation written as

t t'-T

e (t') = p(z) f 1l(t-z) dz - fP(z') fl(t-T-z') dz' . (9)

o o
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As an example, if p(z) has approximately a Gaussian shape, which for some

reason cannot be characterized to better than 1 percent, then p(z) can be

truncated at 3-sigma and then shifted by 3-sigma to yield a non-anticipatory

impulse response form. In this sense, the mathematics can provide accuracy

to an arbitrary degree by increasing the shift parameter - the accuracy

constraints in our problem are inherent in the available data. In the re-

mainder of this section we will utilize only one-sided transform theory.

Returning to Equation 8 and taking the upper and lower integration limits

to be t and zero respectively, and using the transform convolution theorem

and the transform pair,

fl(t-a) U(t-a)-.--s e- F (s); a > 0

yields the result

E(s) = P(s) FI(s) - eTs P(s) F (s).

The solution for P(s) therefore is,

P(s) = E(s)

F 1 (s)( 1 - e - T s )

This may be converted into a Z-transform equation by noting that [7],

Z e-kTls F1 (s) = z-k F1 (z)

thus

P(z) = E(z)
-k

F1 (z) - z F1 (z)
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where the sampling period is T1 and Fl(z ) is the Z-transform of fl(t), i.e.1

'f1 (t) = A + Bt + C e + D e + Et e in the time domain

A B C D E
F1 (s) = ~-+ -- + + + as a Laplace transform

1 s 2 s+a s+b 2
s (s+b)

Az z z z e - b T 1
F (z) = + BT - + C aTl + D bT+ ET
1 z-1 1 2  -aT1 -bT 1 -bT 2

(z-1) z-e z-e 1 (z-ebT1)

as a Z-transform.

The solution form to be utilized in digital programming can now be

seen. For a sequence of input data which describes e (t) with values
o

EO, E 2 , ... E ; the z-transform equation is

-1 -2
E + ElZ + E2z +...

P(z) = 1 2 (11)

Az BT z ETe 1-b T
(lz-k Az + 1 Cz Dz 1 1

(1-z + + + +
z-z1 2  -aT z-bT -bT+ 2

(z-1) z-e 1 z-e 1 (z-e 1)

where k = T/T1 is the system pulse length or "ramp length" in multiples of

the sampling interval; for computational convenience, k should be an integer.

Equation 11 may be manipulated into the form

(z) = [E0 + E1z + E2z + ...] + Jz + Kz 2 + Lz 3 + Mz 4 + Nz- 5]

1- [P + Qz + Rz-2 + Sz + Tz - 4 + V-

where J, K, L, etc., are constant terms such as

J = - (2 + e-aT + 2 ebT1)
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Further manipulation yields

E0 + -1 (JE 0 +E 1 ) + -2 (KE 0 +JE 1 +E 2 ) + -3 (LE 0 +KE +JE 2+E 3
) +

P(z) =  R(12)-1 -2 -3 -4 -5 -k -(KH) -(K+2)P + Qz + Rz + S + Tz + Vz - Pz - k _ Qz - Rz(K+2) ...

If, for example, S-193 data were reconstructed with 2.5 ns increments, a 10 ns

pulse length would correspond to k = 4 in the above equation. This last

equation may be used to directly obtain time domain samples by performing long

division inversion since division of denominator into mumerator gives

m

F(z) = f(j)z - j

j=o

in which f(j) are values of the desired time domain sequence. There are, how-

ever, existing numerical methods for z-transform inversion in the literature

which are very useful in digital programming (see Appendix A of Freeman [7]).

Before undertaking such programming, the actual S-193 waveform data should

be analyzed to determine whether or not modification of the above-used system

description f(t) is in order.

2-3 Computer Simulation Description

The various Monte Carlo and deterministic computations cited herein

were performed on an EAI 380 Analog/Hybrid computer and a PDP-8/e digital

computer. An overall diagram of the computations is given in Figure 17.

In this system the analog computations use pulse lengths of 10 or 100

ms at a repetition rate of 3 to 4/sec., depending on the digital computation

cycle time. The digital computer is capable of A/D rates of A'80 KHz; however,

averaging and other internal operations limit mean waveform accumulation to

about 400 sample values/sec. For the programs now in operation all altimeter

computations through the post-detection filtering process are analog compu-

tations and the digital computer performs the weighting, sample-and-hold,

waveform averaging, split-gate tracker and statistical computations. This
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ANALOG COMPUTER DIGITAL COMPUTER

Simulation of: Sea-state computations

1) Transmitted and 1) Waveform averaging
sea-scattered & statistical compilations
signal properties 2) Sample-and-hold

2) Altimeter IF operations
amplifier and 3) Waveform reconstruction
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3) Post detector A/D Altimeter Computations

convolutions
4) Gaussian and 1) Split-gate tracker

bimodal wave simulation

height distri- 2) Variance and histograms
bution

Random Noise Parameters- Parameters D/A
Generators pulse length, sample weighting

receiver char. and density, x-y plotter,

reconstruction tape recorder,
etc.

algorithm,
tracker gate

configuration

Figure 17. Summary of Computer Functions.

2-37



type of problem breakdown appears to best utilize the salient features of

both machines; it is difficult to see how a totally digital system* could

compete with this hybrid arrangement, either on a computation speed,

convenience of system variation, or cost basis. Details of the computer

altimeter implementation are given separately for the analog and digital

computers in the following two subsections.

2.3.1 Description of Analog Computation

The analog system is diagrammed in Figure 18. The major functions

shown are (1) the backscattered (smooth-sea) and thermal noise simulation,

and (2) the altimeter receiver simulation consisting of the IF amplifier,

detector, video amplifier, and sea-state convolution. Each of these functions

is detailed in the following paragraphs. The noise sources consist of

General Radio type 1390-B random noise generators. Typical waveforms at

different points in the system are shown in Figure 19. As would be expected,

it is impossible to identify mean waveform structure in the individual

ensemble members. As a point of reference, deterministically generated wave-

forms are shown in Figure 20. These were obtained by replacing the random

noise generator shown in Figure 18 with a CW signal at the center frequency

of the IF amplifier.

2.3.2 Backscattered Signal Modeling

Simulation and/!or mathematical modeling of the ocean scattered signal

is the cornerstone of any altimeter system study. In the work reported herein,

the scattered signal is assumed to be describable by the so-called Rayleigh

scattering model which is based on a large number of individual scatterers of

uniformly distributed phase and either equal or random amplitudes (see p. 265

of [8]). The Rayleigh model is equivalent to two quadrature (independent,

equal-variance, zero-mean) Gaussian variables, which for a linear detector

yields a Ralyeigh envelope distribution. Much has been written on the subject

in past altimetry reports; very good general references are Van Trees [9],

Skolnik [10], and Burdic [8]. It will suffice here to state a few results from

*An abbreviated digital simulation was used in the RTI altimeter study in

1970 [14].
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Figure 18. Functional diagram of Analog System.



upper trace = deterministic 10 ns ramp for time reference
lower trace = five independent video waveforms

upper trace = typical detector waveform
lower trace = typical IF waveform

Figure 19. Typical waveforms at different points in the S-193
analog simulation
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video signal

upper trace = simulated 10 nanosecond ramp
lower trace = detector waveform

Figure 20. S-193 analog simulation waveforms for the deterministic
case
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Ref. [9]. The main assumptions in the theory are those of linear, nondispersive

(with r-f frequency) scattering. With very wideband signals (e.g.,large pulse

compression ratios) these assumptions should be carefully considered.

The received signal may be shown to be given by

s(t) = f(t - a)br (a) da

where the tildes are complex signal notation and

br(.) = random impulse response of reflection process of spatial

variable a over (oz 1i)

f(.) = transmitted waveform which for a linear theory may include

receiver effects.

If br(a) is complex Gaussian, the output is also Gaussian and the covariance

completely describes the process and it is

Ks(tu) = f(t - a) E[Jb (a)2 ] f*(u - a)da (14)

where E is expectation. If the scattering process is taken to be only area

dependent,

E[Ibr(a)1 2] = a constant for a > Z

- U(a - l )
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where U is the unit step. Therefore

K~(t,u) = f(t - a)U(a - 9 )f (u - a) da, t > u (15)

and the variance expression is (t = u)

K (t = u) = f(t - a) f*(t - a) da (16)s (16)

Using this form of br, and a transmitted signal comprising a rectangular

pulse which begins at t = 0 and terminates at tl, the convolution of

these quantities leads to a time-varying process with linearly increasing

variance over 0 < t < tl, and constant variance for t > tl.
In the simulation, the above effects are modeled as follows: the non-

stationary (ramp) behavior of the process variance is modeled by the product

operation shown in Figure 21. Correlation properties of the signal are

approximated by the filter H(s) which for a transmitted rectangular pulse

H(s) would comprise a [(sin x)/x]2 spectrum or a triangular* autocorrelation

function. An analog method of generating the sin x/x property is shown in

Figure 22. It consists of implementing the transfer function

-Ts
1 - e

H(s) =

*As baseband equivalents
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Figure 21. Simulation of time-varying signal.
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as a baseband process. A program for direct generation of the bandpass process

has been designed; however, it is much less convenient to use. The delay

operation e- T s will be discussed later.

It can be argued that transmitter bandpass functions will cause an actual

spectrum to depart from a (sin x/x)2 envelope and much simpler filter operations

could be used. This is partially true; however, in the writers' experience

microwave radar transmitters have been found to radiate signals containing

pronounced spectral sidelobes. It is thus felt that the simulation should

provide for some lobular structure. In the sea-state simulations this factor

is less critical and a simpler H(s) function was used. However, modeling of

the received signal properties is of critical importance in studies intended

to optimize IF bandwidth, detector type, video filtering, and tracker functions

versus altimeter accuracy. This last task has not as yet been initiated.

IF and Video Filter Operations

The IF amplifier and video amplifier are programmed using maximally flat

transfer functions consisting of two-pole pairs and two-poles, respectively.

Design bandwidth of multiples of 0.5, 1.0, 2.0, and 10.0 of matched conditions

are utilized where "matched" is defined as two times the reciprocal pulse

length for the IF and the reciprocal pulse length for the video. In order to

fit the overall programs on the analog facilities available, the IF amplifier

simulation has been constructed as a separate entity using commercially

available operational amplifiers.

Sea-State Simulation

In the hybrid simulation the effect of ocean surface roughness is modeled

through use of a post-video filter which is designed to model expected radar

observed wave height distributions. Previous analyses have shown that this

effect may be mathematically represented as a convolution of the radar video

signal with the ocean impulse response p(z) [1]. For purposes of this analysis,
a series of Gaussian impulse response functions were used to investigate sen-

sitivity of the S-193 experiment to sea-state conditions.
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Analog computer programming of the p(z) functions used in the simulation

was first attempted using the method of Kastelein [11] in which the desired

p(z) function is first expressed as a repetitive form and even and odd parts

of the transfer function are used to approximate the nonrepetitive p(z) net-

work func'tion. This method was found to produce highly sensitive, marginally

stable transfer functions, and the following method was developed instead.

To describe the method used to generate an analog program approximating

a Gaussian impulse response, consider the Laplace transform H(s) of an im-

pulse response h(t) comprising one cycle of a cosine function over -T to T

and a dc- level

h.t) 1 1

h(t) = 1 [1 - cos(2Tkt - )] 0 < t <
2 k

= 0 otherwise .(17)

The transform is readily found to be

S
1 1 s k 1 sH(s) = [ 2 2 -e (s 2 2) ] (18)

s + (2k7) s + (2kf)

which shows that a truncated time function can be constructed by delaying

and differencing the repetitive waveform. The delay function can be

implemented using a number of well-known techniques. The one to be used

in the sequel is a fourth order Pade approximation [12].

Next consider the use of other functions. The Gaussian function was

programmed by finding the Fourier series representation of a Gaussian curve

truncated at + three sigma and starting at t = 0, i. e.,

1 (t 3)2

h(t) = e2 0 < t < 3 (19)

= 0 otherwise
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2x
which has the series representation 

for = -

h(t) = .416-.486coswt+.088cos2wt-.01cos3wt-.00
3cos4mt+.006cos5mt+...

Then H(s), the Laplace transform of this series representative of h(t) is

given by

.416 .486s .088s
H(s) =  s 2 2 2 2 (20)

s + w s + 40

A three term approximation to the Gaussian function was found to be

an adequate representation, with the greatest error arising from the fourth

order Padd approximation. This program is shown in Figure 23. The fit to

a true Gaussian is within about + 5%. For greater accuracy, a sixth or

eighthorder Pad6 network would be needed.

2.3.3 Digital Computer Simulation

The digital computer functions are divided into two major areas:

studies of (1) ocean surface roughness and sampling aspects and (2) effects

of system variations on overall altimeter precision.

Discussing category one first; the digital functions consist of simu-

lation of the S & H operations, reconstruction of the sampled waveforms,

and statistical computations. The weighting and sampling characteristics

of the S-193 system are taken to be representable in the 10 ns case as

final value samples of exponentially weighted values extending backward in

time by two time constants. Oscilloscope photos of the sample weighting

functions were shown in Figure 11.

For purposes of this study, a (sin x)/x interpolation type of recon-

struction filter is used. In processing actual S-193 data, it may be ad-

visable to use the technique developed by Slepian and Pollak [13] or to

use a minimum variance Wiener Filter [7]. Also note that satellite data

may be reconstructed using separate batches of S & H data spaced by 10 ns

or the two batches interleaved 5 ns apart. If waveform dat-a from the various

S & H array locations are mixed prior to reconstruction, a non-uniform density

of sample values spaced 5 rather than 10 ns results.
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Figure 23. Analog program for the Gaussian function generator



Statistical processing consists of (1) densely sampling (around 100

values) each waveform and (2) averaging the values to obtain mean waveforms,
histograms, and variance values.

Digital simulation of the altitude tracker is based on an equivalent

closed-loop method suggested by E. L. Hofmeister of G. E., Utica, New York.

In it, open-loop measurements with a split-gate tracker are analytically

converted into closed-loop values. Digital implementation of the split-gate

tracker consists of uniformly weighting the two gate regions with selectable

spacing. These two values for each waveform are then weighted to effect a

time-discrimination characteristic. Details of the closed-loop transfor-

mation are discussed in Appendix B. Mean waveforms for the noise-free and

-6 dB SNR case are shown in Figure 24.
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signal only present

signal plus receiver noise (SNR%6db)

Figure 24. Simulated mean waveforms obtained by averaging 1000
individual waveforms (simulated sweep-rate 2.5ns/cm)
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APPENDIX A

VIDEO FILTER AND SAMPLER SIMULATION RESULTS

The objectives of this Appendix are to present data relevant to the

problems of:

1. determining filter characteristics of the weighting function

or aperture effect of the S-193 sampling function;

2. comparing the system responses for various types of video

amplifier response in light of the importance of the exponential

sampler in establishing overall response; and

3. describing the S-193 system response adequately for the

formulation of the sea-state integral solution.

These effects have been investigated by simulation of the S-193

parameters for the above delineated conditions. Figures A-I and A-2

display the mean waveform response for four types of video filters shown

in the upper trace (RC, Butterworth, Bessel, and Chebyshev), and the

resultant sampler response for each filter shown inthe dotted trace. The

sampler response in these figures was obtained by digitally sampling the

simulated waveforms with exponential/truncated weights as described in

paragraph 2.2 in an overdense sample pattern to display transient char-

acteristics of the finite-aperature sampling process. Examination of the

four filter cases given in Figures A-i and A-2 indicates the expected

behavior. Overshoot characteristics of these 2-pole filters may be

describcd by the equivalent damping factor ( as given below in the norm-

alized form H(s) = 1 + 2 +s

RC 1
2 ; =

s + 2s +1

Bessel 1
2 ; 5 = .86

s + 1.72 s + 1

Butterworth 1
2 = .707

2 -+ s + 1

Chebyshev 1
2 ; = .5

e = .58 s +s+l
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As would be expected for these factors, the filters display the ap-

propriate degree of overshoot and rise-time. Either the second or the third

case is considered to be acceptable. The Bessel filter is considered to

represent a good compromise between rise-time and overshoot; it also has

better symmetry about the 50% point than do the other cases, and is gen-

erally recommended for waveform studies. The lower trace, whose maxima

represent the response of the 10 ns gate length used in S-193, demonstrates

the comparative ramp response of each of these filters as viewed at the

output of the sample function. These results show the S-193 system to

be only slightly affected by the exact type of video response present.

Indeed, it is necessary to simulate rather extreme overshoot, such as the

Chebyshev case given, for overshoot characteristics to be easily discernable

in the sampled waveform. For this reason we wish to further examine response

characteristics of the S-193 sampler.

Based on the 10 ns (at e- 2 point) gate length and exponential response

of the S-193 sampling function, one might expect the sampler response could

be modeled as an RC filter with time constant (e- 1) of 5 ns. This case is

shown in Figure A-3-A. Comparing this behavior with the results of the

previous figures clearly indicates that such a filter does not match the

S-193 system response. Figure A-3-B shows an RC filter with a shorter time

constant (corresponding to a corner frequency of 50 MHz) which provides a much

better comparison. On this basis, we conclude that the behavior of the S-193

(finite aperture) sampler is representable to good approximation as a

continuous-time equivalent 50 MHz RC filter. It is also concluded that the

sea-state estimation process is reasonably insensitive to video amplifier

characteristics.

For purposes of documentation, Figure A-4 shows the simulated ramp

responses (10 ns) of the 2-pole video filter only, for the Bessel and

Butterworth cases.
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Video Filter - 2-poie RC

f3db = 50 MHz

Video Filter - 2-pole Bessel
f3db = 50 MHz

Figure A-I Comparison of Video (solid trace) and Sampler Waveforms
(simulated sweep-rate = 5ns/cm)
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Video Filter = 2-pole Butterworth
f3db = 50 MHz

Video Filter = 2-pole Chebychev
cu .58
f = 50 MHz
3db

Figure A-2. Comparison of Video (solid trace) and Sampler Waveforms
(simulated sweep-rate 5ns/cm)

A. RC 3db Bandwidth = 31.4 MHz

(T = 5ns)
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A. RC 3db Bandwidth = 31.4 MHz

(T = 5ns)

E.im-,,M

B. RC 3db Bandwidth = 50 MHz

Figure A-3 System Response with a 2-pole Butterworth video filter and
1-pole RC (to simulate sampling weights)
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BESSEL

BUTTERWORTH

Figure A-4 Ramp response of Video Filter only
(simulated sweep-rate = 50 ns/cm)
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APPENDIX B

TRACKER CHARACTERISTICS

The purpose of this appendix is to describe the method developed by

Hofmeister [2] for computing closed-loop altitude tracker characteristics.

It consists of the conversion of ensemble-member video waveforms Yi(t)

into equivalent tracking loop noise e (i), and subsequently into tracking

loop error variance. This is shown below.

Open-loop Conversion Compute 2 Effect ofwaveforms to equivalent e i variance eo tracking 2
y(t) additive noise 0 f e (i) loop Tracking

M Tracking
error

variance

Computation of eo(i) is based on the equation

ei f [Yi (C) - Yi(-) ] r(a)da (B-l)

in which yi() is the mean value of yi(a) and r(a) is the tracker gate

function shown below.

1.0 r(a)

.5

2T 3T

-1.0

In the digital implementation, the two terms in the integrand are computed

as separate integrations, and the variance of e (i) is then formed. The

final result, a , is obtained via equation A-22 of [2] i.e.,

S 2 eo 2 B(z) B(z ) dz (B-2)

r = unit circle

2-58



which is a tabulated integral; B(z) is a discrete-time transfer function
2

which describes the feedback loop (see A-14 of [2]). On this basis a
T

can be written as

a2
2 eo
T R2

where R2 is a variance reduction factor which is given to good approximation

by [2]

2 PRF
1B1

These symbols were defined in section 2.1. A computer program for determination

of R2 is available from E. Hofmeister; its inputs are

K = velocity gain

f = crossover frequency

T = sampling interval (1/PRF)

and the program calculates R2 for a specific loop design.
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CHAPTER 3

RADAR CROSS SECTION CHARACTERISTICS FOR NEAR-NORMAL INCIDENCE

BACKSCATTER GEOMETRY

3.0 INTRODUCTION

This chapter examines the relationship between the ocean surface

wavenumber spectrum S(k) and the microwave backscatter cross-section per

0
unit area,a ,as calculated by a physical optics integral for the near-

normal incidence case. Specifically, it is necessary to know that range

of wavenumbers, k, which provides the major contribution to ao, because

ground-truth activities to support the Skylab microwave backscatter ex-

periment must be designed to obtain maximum information in that k-range.

The link between the surface spectrum S(k) and o is the autocorrelation

functionp (r) which is the Fourier transform of S(k), and which appears
0

in the physical optics integral for ao

The transformation from S(k) to P(r) may not be accomplished in closed

form for most currently accepted spectral descriptions of the ocean's surface

even if the spectrum is assumed to be non-directional. It is possible to

evaluate ao numerically by performing the S(k) p(r) transformation numeri-

cally and this has been done by Chia [19], but insight tends to disappear

within the details of the computer programming. It is possible, however,

to chose a form for S(k) which has the k- 4 Phillips behavior for large k,

is reasonably good at representing experimental data even at low k, and

yet does lead to a closed form result for p(r) under the isotropic assumption.

This spectral form, Sa(k), is discussed in Section3.l. By requiring that Sa(k)

have the same mean-square waveheight as the Pierson-Moskowitz spectral form [2],

it is possible to bring a wind speed dependence into Sa(k).

This spectrum is then used in Section3.2 to find ao for a range of wind

speeds and angles of incidence, and the results obtained are compared with

Guinard's experimental results [14]. The inapplicability of function expansion

techniques in this problem is also discussed as is the error in approximate

integration techniques.

o
Section 3.3 examines the effects on a0 of truncating the spectrum S (k)

as a means of determining relative importance of different spectral regions.

To carry this out, approximate expressions are developed for the auto-

correlation function from the truncated S (k) and the validity of the

approximation is checked by comparison with the results of Section II.
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The results of Section 3.3 show that 6 depends strongly on the ocean

spectral characteristics for surface wavelengths in the range .06 to

60 meters but that backscattering is insensitive to all wavelengths

shorter than 6 centimeters, the capillary range.

Section 3.4 examines the possible changes in the 0o result as the

isotropic assumption is removed. The directional spectra of Cote et al.[15]

and Longuet-Higgins et al.[17] are used and it is shown that the isotropic

part of p(r,4) dominates the ao result with negligible contributions from

the anisotropic components. This is a significant result as it would con-

siderably simplify the task of ground truth data acquisition.
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3.1 THE ASSUMED OCEAN SURFACE SPECTRAL FORM AND THE SCATTERING FORMULATION

In order to utilize the physical optics theoretical foundation it is

first necessary to adopt an analytical expression for the spectrum of

wind-generated ocean waves. Oceanographers have for many years attempted

to define empirical or theoretical models of the wave-height spectrum.

The model to be used herein is based on the works of Phillips [1], Pierson

and Moskowitz [2], and the experimental results given in Hess, Hidy, and

Plate [3]. The starting point will be the Phillips equilibrium spectrum

which assumes that surface conditions have existed for a sufficient time

period that fully developed or steady state surface statistics exist. This

model also assumes that an upper limit on the growth of waves exists beyond

which wave breaking occurs, and that swell from distant storms is negligible.

Because of its equilibrium nature, this spectrum is in some sense an upper

bound. The Phillips asymptotic behavior of k-4 (in wavenumber space) will

be used to describe the high wavenumber form of the spectral model. The

model's low wavenumber asymptote is based on the data shown in Figure 1.

This figure suggests that a rational polynomial approximation may be useful

in describing the spectrum. A function which is amenable to integration

and will subsequently be shown to be a good approximation to experimental

data is

pkS (k) = 4 k<k (1)a 2 2 4 c
(k + a

where S (k) is the isotropic wavenumber spectrum, and a and 3 are constants

to be determined. It should be noted that the same dimensional arguments

that predict k- 4 behavior also lead to w-5 (w = radian frequency) asymptote,

quite independent of the particular form of the dispersion relationship. For

convenience in selecting constant values, the mean-square height resulting

from S (k) will be equated to the mean-square height resulting from the Pierson-

Moskowitz spectrum [2] Sb(k) where*

*Both Sa(k) and Sb(k) may be considered to be a specialized form
of the more general two-dimensional spectrum *(k, ); without loss of
generality, one can write *a(k,#) = Sa(k)F(k,4P) and similarly for Sb(k).
Then the isotropic assumption simply implies F(k,,)=l.
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Figure 1. Data Summary from Hess, Hidy, and Plate [3],
with S (k) plotted for 5 and 10 knots wind
speed.a
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Sb(k) = exp [9.5k v k<kv (2)

k I

and l= 4.05 x 10 and k and v have dimensions of (centimeters)-1 and knots.

The upper bound of k, in (2) indicates a lack of knowledge of the spectrum in

regions beyond the gravity wave range, and the k- 4 Phillips behavior is obvi-

ously contained in (2). Other exponent values of k in the numerator of (2)

have been given in the literature ranging from 3.721 to 4.5 [see Bass [4] and

Valenzuela [511. Imposing the requirement that Sa(k) and Sb(k) yield the

same mean square height, i.e.,

S (k)kdk =f Sb(k)kdk,
o o

results* in the constant a2 having the value (28.5v) - 1 and =. Normalized

plots of kSb(k) and kS a(k) are shown in Figure 2 to illustrate the effect of

requiring mean-square height equality.

In order to compare the above spectrum model with experimental data, it

is necessary to re-express it in the frequency domain. Using the gravity range

dispersion relationship the radian frequency (w) spectrum can be shown to be

2 11
S (w)- 20g w

a (w4 + a2g2)4

Graphs of the above are given in Figure 1 for two values of wind speed and for
2 4-1

the relationship a = (28.5v )- . This figure also contains experimental data

from a number of sources. The data from Collins was recorded in the proximity

of Hurricane Dora and the data from Kinsman corresponds to limited fetch con-

ditions. Only the data from Pierson and Longuet-Higgins appears to correspond

to near-equilibrium conditions for the lower frequency range components.

Figure 1i, therefore graphically depicts the paucity of data available in the

high energy spectral range. The comparison of this model with the Pierson data

is reasonably good; to match the reported wind speed condition ( 18 knots)
2 4-1

would require slight modifications of the parameter a = (28.5v4)-

*Note that a must have the same dimensions as k; in this report k is in (cm)- 1

and v is in knots. For any other units of k or v, the factor 28.5 will change.
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Figure 2. Comparison of the Pierson-Moskowitz spectrum S(k) with the approximate spectrum.



The two-dimensional surface height correlation function p(r,4) and

the surface height wavenumber spectrum S(k,qf) are a Fourier-Bessel trans-

form pair:

C 2o

p(r,4) = f I(k, )ejkrcos(-4)kdkdi

o o

02(3)

\P (k, ) = - p(r, e-jkrcos (- )rdrd4

o o

The mean-square wave height is given by p(o,p) and the normalized surface

height correlation function p n(r,) is p(r,O)/p(o,o).

For near-normal incidence, the electric currents giving rise to the

scattered fields are assumed to be the zero order physical optics currents

induced on the scattering surface. Under this assumption and that of a

Gaussian surface height distribution, the average monostatic cross section

per unit area of scattering surface (0o) is given by [7].

Ro 2

0(0 () 2 f f e j2KrcosqsinO-4K 2h 2 cos [1-p (r,)]2r2cos2 e m n rdrd4 (4)
o o

In (4), Qo is the normal incidence reflection coefficient, R is much

greater than the surface height correlation length, Bis the angle of in-

cidence measured from the normal to the mean surface, K= 2- is the rf wave-

number and hm is the mean-square surface height p(o,4). It should be notedm
that the application of physical optics is valid only when the local radius

of curvature of the scattering surface and the mean-square surface height

are both much larger than the incident rf wavelength.

One of the intents of this effort is to evaluate (4) for the ocean

surface whose spectral form is assumed to be approximated by (1). However,
because of the presence of high frequency components in the surface's height

spectrum, can the physical optics approach be valid? It would certainly
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appear that the scattering surface does not everywhere obey the criterion

of large local radius of curvature (relative to the rf-wavelength). It is

obvious that the physical optics method may not be totally valid here. In

fact, this same point was the center of a recent controversy between Fung

and Barrick [8] over Fung's use of the physical optics approach to describe

composite surface scattering.

It will be shown in this note that for near-normal incidence and the

spectral form given by (1) the physical optics approach yields an answer

for o which is insensitive to the high frequency part of the surface height

spectrum. This fact will be demonstrated by first letting the spectrum in

(1) extend to infinity and then truncating the spectrum at some point k c<K;

the values of a computed from both of these spectra will be shown to be the

same.
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3.2 ISOTROPIC INFINITE SPECTRUM RESULTS

For the first case in point, (1) will be assumed to represent the

ocean height spectrum throughout the entire wavenumber plane; that is,

the spectrum will only be a function of radial wavenumber k and k + .

The reasons behind the isotropic assumption are the lack of directional

spectra data on the ocean's surface and a great simplification in the

mathematics. Also, letting (1) hold for k C(O, co) should cause no error

if the physical optics formulation is truly insensitive to the small-

scale surface structure. Of course, a proof of the last statement is one

of the purposes of this study.

Substituting (1) into the transform relation between the spectrum

and correlation functions yields

p(r) =/ Jo(kr) 2 2 4 dk (5)
(k +a

o

where Jo(kr) is the Bessel function of the first kind and order zero.

When r=O, (5) may be easily integrated to give the mean-square height

p(o) = h 2

m 2
6a

Thus, the normalized height correlation function is

pn(r) = 6a 2  Jo(kr) 2  24 dk (6)
(k + a

Using the recurrence relations for Bessel functions to obtain the proper

combination of Bessel order and power of k in the numerator of (6) yields

three integrals of the Hankel-Nicholson type [9]. The exact evaluation

of (6) is;

Pn (r) = [1 + /8(ar)2](ar)Kl(ar) - (ar)2Ko(ar) (7)
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where K1 and K are Bessel functions of the second kind of order 1 and 0,

respectively. A plot of pn(ar) is shown in Figure 3. It should be noted

that Pn(r) has no power series expansion about r=o since its second deri-

vation has a logarithmic singularity at r=o. For ar<<l, Pn(r) has the

following approximate form*

P (r) - 1 + 1.5 (ar)21og(ar) . (8)

Figure 4 illustrates that the approximate and exact forms are in very close

agreement even for ar as large as 0.1.

Before discussing the possibility of further simplification of (8), it

is desirable to know the required range of the variable r in the ao integration.

Under the isotropic assumption, the expression for a0 reduces to the following

form

2 2 0

K o f -4K2h2 cos20[l- (r)]
ao() = J (2Krsino)e m n rdr (9)

rcos 0

A plot of the integrand in (9) is shown in Figure 5 forO = 00 and Figure 6

for 0=300. For v 3.6 knots, these figures show that the integrand is es-

sentially zero for r>20 centimeters. Using n (r) from equation (7) and

accomplishing the integration in (9) by numerical means results in the solid-

line curves of (08) versus wind speed as shown in Figure 7. These plots

clearly illustrate the insensitivity of ao to changes in wind speed.

Previous analytical efforts [10, 8, 11, 12] have provided approximate

expressions for ao based on certain assumptions about the correlation function.

The one assumption common to many of these investigations was that the cor-

relation function could be represented by a power series in a neighborhood of

the origin [13]. Unfortunately, such a series does not exist for the cor-

relation function in equation (7) because the function is not analytic at

r = o, and, therefore, the approximate expressios for ao have no meaning for

this particular example. However, some simplification of the correlation

*All logarithms in this chapter will be to the base e unless otherwise
noted.
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Sa(k), (a2 = 1/28.5v 4 ).
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function (due to the small numerical value of the parameter a) can be

accomplished. In particular, (ar)2 log(ar) in (8) can be reduced to

(ar)2 log(a) for v greater than about 3 knots and then

pn(r) ; 1 + 1.5 (ar)2 log(a) (10)

The reasoning behind the simplification from (8) to (10) is as follows.

The difference between (8) and (10) is significant only when r is on the

order of or less than the parameter a. However, since a = 1/(5.3v 2) is very

small, the difference betwen (8) and (10) is only appreciable for r<<l. When

r<<l, the integrand in (9) is dominated by the linear r term and hence the

resulting effect on the ao integral in (9) is negligible. The approximate

expression for pn(r) in (10) may also be justified by noting that as r -+ o

(ar 2)log(ar)+ - 1/2(ar)2 + (ar)21 og(a) z (ar)21 og(a),

where L'Hospital's rule has been applied to (ar)21og(r) to determine its

limiting form as r - o.

When (10) was used in (9) and the integration accomplished numerically,

the resulting values of ao differed by only 0.1 to 0.2 dB from ao computed

using the exact expression for p n(r). Following the reasoning of [7], if

R is taken to be infinite, then (9) may be integrated in closed form when

(10) is taken to be the correlation function. The resultant expression for

ao(0) is

2 tan2 ]
aexp I log(l/a)

(e 2acos48 6log(l/a) (10a)

The closed form results are shown as dashed lines in Figure 7. A comparison

of the closed form curves with the numerical integration results, both using

(10) for the correlation function,shows that the closed form approximation
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is significantly in error only for small wind speeds.

Figure 8a is a graph of ao versus angle and Figure 8b shows 0o versus

wind speed. One of the objectives of this section is to determine if the

physical optics theory, when used in conjunction with a physically plausible

autocorrelation function rather than one chosen on grounds of mathematical

tractability, demonstrates any drastic changes in ao for small angular dis-

placements near normal incidence. Such behavior which has been speculated

on numerous occasions [20], would be of considerable theoretical and en-

gineering interest to the GEOS-C and related programs. Note that measure-

ments to investigate ao very close to normal incidence also pose one of

the more difficult experimental geometries for an aircraft test program

since high altitudes and narrow antenna beam widths would both be required

to satisfy angular resolution and illuminated area considerations. According
0 0o

to Figure 8a, drastic changes in o near 0= 00 are not in evidence in this

theoretical result - experimental confirmation from Skylab will be awaited

with considerable interest. The second factor to be discussed in connection

with Figure 8a is the angular dependence encountered. Note that this depend-

ence is minimized at a particular angle (-9 degrees); a result that is in

accord with the scatterometer concept of comparing returns at a particular

angle with returns at large angles rather than requiring the scatterometer to

measure absolute value. That is, it is much easier to compare ao values at,

say, 10 and 40 degrees than to require absolute ao measurements. The results

shown in Figure 8a offer further evidence that such a scheme is feasible. The

third factor to be noted in Figure 8a is the degree to which ao decreases with

increasing angles off of normal. We show ao decreasing more rapidly with

angle than does the only comparable study [19]. In this reference, the num-

erical nature of the work makes any identification of the physical reasons

for the disparity with our results extremely difficult. Lastly, Figure 8a

indicates that the approach of relating normal incidence ao to surface winds

(as suggested on GEOS-C satellite) will be of limited value - the figure shows

that a variation in wind conditions of 5 to 38 knots produces a maximum vari-
0

ation of 6dB in O . Thus the results indicate that only gross changes in

wind conditions could be resolved, even under equilibrium conditions.
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Figure 8b shows the saturation effect discussed by Guinard [14] to be

strongly in evidence in these near-normal incidence results. For an angle-

of-incidence of 15 degrees, over a wind speed range of 15 to 35 knots, ao

is shown to vary by only 1.5 db. The curves shown in Figure 8b contain an

obvious level shift between the computed and experimental values. We attach

more significance to the relative than to the absolute values given because

of the uncertainty and reported variability of the numerical constants in-

volved in the absolute computation (i.e.,dielectric constant, spectral factor

0, atmospheric attenuation, and so forth). Both comparisons are subject to

the caveat that Guinard's ocean conditions are assumed to be representable

as swell-free, non-fetch-limited, equilibrium conditions.

The above discussion points up the need for rather extensive ground

truth data in any attempt to correlate measured and computed o data. So

far, we are unable to place bounds on the ocean spectral description needed -

this is investigated in the next section. It is recognized that the long

wavelength end of the spectrum is only poorly known. Schule [21] gives data

which shows that the effect of limited fetch results in non unimodal behavior

in the long wavelength range. It is conceivable that fetch restrictions or

swell components could cause the ao versus wind speed relationship to in-

herently lead to sizable data spread if these effects are neglected. With

appropriately measured spectra and other ground truths parameters, perhaps

the long standing ao controversy can be resolved. Ocean surface wavenumber

spectral measurements are extremely difficult and costly to obtain over any

sizable wavenumber range. The objective of the remainder of this study is

to derive theoretical guidelines relative to the k-number range and the

angular variation one should attempt to obtain in spectral measurements.

The primary reason for considering the infinite spectrum case is to

provide a basis for studying the effects of spectral truncation. The infinite

spectrum has, however, led to a very interesting correlation function having

the following properties:

a) pn(r) is asymptotically parabolic as r -+ o, but not over a sufficient

range to allow accurate asymptotic integration of the o0 integral,

b) pn(r) is not of Gaussian or any of the forms prevalent in the

literature, and
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c) Pn(r) does not have a power series representation as r + o, i.e.,it

is not analytic at r = o*.

For this correlation function, it is quite easy to verify that conven-

tional [8, 10, 11, 12] approximate or asymptotic technique for evaluating

the scattering integral in (9) fail. While Pn(r) is derived from a particular

surface height spectrum, the important point to note is that approximations

to (9) do have distinct limitations and interpretation of backscattering re-

sults in terms of ad hoc forms for Pn(r) should be accomplished with great

care.

*We have avoided discussion of the fact that the mean-square surface slope
is infinite for the correlation function in (7) since this is "a symptom
of deeper problems inherent in the model" [13]. An effective slope (which
remains finite as r -* o) may be deduced from (10), but it is somewhat dif-
ferent from that originally discussed by Hagfors [11]. That is, the mean-
square slope deriving from (10) is not equivalent to the mean-square slope
resulting from a truncated spectrum, as will be shown in the next section.
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3.3 SPECTRAL TRUNCATION EFFECTS

In order to show that near-normal incidence scattering is insensitive

to the high wavenumber portion of the ocean height spectrum, it will be

necessary to investigate the effects of truncating the ocean height spectrum.

The truncation results will indicate where sea-truth data can be neglected

with no appreciable effect upon the correlation of eo measurements and theory.

If the isotropic spectrum in (1) is truncated at some point k=kc, i.e.,

/k k4 k<k
S(k) =  (k2 + a24 c

0 k>k
c

the correlation function becomes p(r), where

k

(r) = (k2 + 24 J (kr)dk (11)
Jc(k 0+ a
0

Expanding the Bessel function in a power series about r=O, integrating

the first three terms and rearranging yields

k
2

c

) 2 .-./2. m 4r. , 2. m ,a+2
P(r) = b + dr (12)

m r (m+l) m 2 m !(m+l) 42 m=o 2 mm2 (r +a)
0

where,
2 4

1 1 a a
b = +
0 3a 2  6 2 353

2 4 6
b 11 2 a 3a 3a4  a

b1 21og(a) + 2 + 3 + log()
1 6 6 26 3

3-22



b2 10 a + 8a2 log(a) - 4a 2 log() - 6 a  + 2 3

S 3 2 3

2 2
and ( = (k 2 + a ). When k r <<1, the finite series in (12) is sufficient

c c
for numerical purposes. The integration in (12) results in the following.

k k2 +0(a 2)  m 2

2 4 2m -2 2m - 4
(r + a )  k k

o + 0(4a m ) m > 2
(m - 1) m- 2

Thus, for k 2/a2>>9,
c

2 k m= 2
kc c

f m+2 dr

24 d T 2m - 2
(T + a )4  k

o m >20 (m - >2

and the correlation function becomes

2 ( - 1 / 4 r 2 ) b  (-1/4r2 mk 2m-2

2(r) 7 E m ! m+l) m, r(m+l) (2m-2)

m= m= 2

When k r is much larger than five, the infinite series in (13) is difficultc
to numerically sum because of the magnitude and oscillatory behavior of the

individual terms. To overcome this difficulty, the infinite sum may be re-

placed by its equivalent, i.e.,

kr
c

(-1/4r 2 mk 2m-2 J()-+1/4

E m ! F(m+l)(2m-2) =r f 3 (14)
m= 2 o
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Integration by parts leads to

(-/4r 2 )kc 2 m- 2  2  1 l-J(kcr) +k~-J(kr)

m i(m+l)(2m-2) 2 (k- 1/2
m=2 (kcr)

2 1,,+Jgk r J (7)
+ - 7+log c dr

kr
c

whereYis Euler's constant, and for k r>5
c

Jo (7) 2gl(kcr)Jo(kcr) go(kr)Jl(kcr)

(kcr) 2  (kcr)

kr
c

The g-functions are a series in inverse powers of k r and are explicitly

given by Reference [9], Page 482. Combining all of the preceding results
leads to the following equation for the correlation function:

2 (-1/4r2 mb
P(r) = 9 + 4) (k r) (15)

m=O (m!)

where for k r <<1
c

4 (kcr) - 0

and for k r <5 and k 2 >>9a 2

c c

CO (-1/4r2k m
(e ~ 2 2 c

kc (m!)2(2m-2)
m=2
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and finally for k r>5 and k >>9a ,
C C

[k r
S_(k r)+ [- L log

c 2 ()k 2 2 (k r)

r 2  2g (k r)J (kc r )  g (k(kr) r)

4 (kc r)2 (kcr)

The mean-square wave height for the truncated spectrum is 1/2 )bo, which

is approximately equal to 0/6a 2 . Therefore, the normalized height cor-

relation function is

1 - 2 (-1/4r2 mb 2
Pn(r) = o (m 2 + - -o  (k c r) (16)

m=o

For this case, it is obvious that the correlation function is parabolic in

the neighborhood of the origin, and, in fact, for ar<<l and kc fixed

'n(r);l + 1.5 (ar)21og(a) (17)

Comparing equations (17) and (10), it is easily seen that the finite and

infinite spectrum correlation functions are very similar in the region of

significance to the o problem.

Equation (16) is useful because it permits an assessment of the effect

of high or low wavenumber spectral truncation. From a practical standpoint,

if the instrument measuring the ocean height spectrum only responds to wave-

numbers in the range from k to k (Figure 9), it is desirable to know how

the resulting computed value of a will behave as a function of wind speed.

In this study, both low and high wavenumber truncation effects were investi-

gated and the results are shown in Figure 10 for normal incidence. It was
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found that the spectrum could be truncated at k = 1.0 (cm)- I (X = 6.28 cm)
c c

and the resultant values of ao were only about 0.1 to 0.2dB different from

the infinite spectrum case. Since this value of ocean wavelength is still

within the so-called gravity wave range, the original contention of high

frequency insensitivity is proven for the Phillip's behavior. If the spectrum
-1

is cut off at k = 0.1 (cm) (X = 62.8 cm), the net effect is an increase
c c

in absolute value of ao and also a very slight increase in slope for low wind

speeds.

In contrast to the relatively small effects of truncation at the high

wavenumbers, truncation at the low wavenumber end of the spectrum completely

changes the character of the ao vs. wind speed curve if the true* mean-square

height is used in the integral for a . That is, the spectral truncation is

assumed to alter the correlation function but not h2 , Such a situation could

arise when separate instruments are used to measure spectral characteristics

and mean-square height. To understand how the scattering integral behaves as

a function of the spectral truncation point, it is necessary to examine l-p' (r)

as a function of r. Figure 11 is such a plot with k = 1 (cm)-  and as a
c

function of r and wind speed. All of the curves have exactly the same shape

with a downward translation being the only effect of increasing the velocity.

The other important point to note from Figure 11 is that [1 - ' (r)] decreasesn
almost uniformly with increasing velocity. In Figure 12, the spectrum interval

from 10-3- 1 (cm)-1 was taken to represent Pn(r). Here it should be noted

that [1 - n(r)] becomes independent of velocity for v236 knots. Since the

mean-squared height@ continues to increase with velocity, this would imply

that the scattering integral for ao will exhibit a very rapid roll-off as a

function of velocity for greater than 36 knots. Figure 10 clearly shows the

mean-square height dominance for lower spectral truncation points of 0.01 (cm)- 1

and 0.001 (cm)- 1

Rather extensive computations were performed to isolate that portion of

the spectrum which contributed most to ao integration. In these computations,

*The true mean-square height as used here is the height which would be obtained
by a perfect recording instrument, i.e., no distortion or frequency limitations
and no effect on the surface being measured.

~he mean-square height employed in these computations was that derived from
the spectral range of (0,1) since this would most likely be the actual
measured height.
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both the upper and lower spectral truncation points were changed. It was

found that if the lower spectral truncation point was set at kc 
= k peak/4,

where k was the wavenumber for which the spectrum achieved its maximum,
peak - o

and the upper point was set at 1.0 cm , a was essentially the same as with

the infinite spectrum. From these calculations, it may be concluded that the

backscattering is most sensitive to that portion of the spectrum between k /4
peak-1

and approximately one centimeter .

Based on a power series expansion of the correlation function about r = o,

Barrick [10] and others have interpreted backscattering in terms of the mean-
2

square slope s of the surface. That is, for an analytic correlation function

at r = o, we will assume that for purposes of the ao integration

2
1 Pn 2

p(r) z n(o) + 2 r
nr

then (9) becomes

R 2
K2 Q1 2  0 2 2 2 an 20o ol + 2K cos Oh r

a ) (2KrsinO) e m 2  rdr

0 r= o

2
Defining the mean-square slope s asm

2 2 a n
s= - 2h 2

m m r2

r=o

and letting R 0 m, the expression for a (0) is integrable, and

2

o2s(0 exp -tan20 (17a)

2rs cos 0 s
m m

3-31



For the infinite spectrum, the mean-square slope is of course infinite. For
2

the truncated spectrum, sm may be obtained directly from (12), i.e.,m

2 b
m 2 1

or

2 )k 2 2 3a2  3a 6 

s + log + - +
a (kc + a ) 2(k 2 + a2)2  3(k + a) 3

Although the correlation function ' (r) does not change in value* once the
-1

spectral truncation point exceeds l(cm) , it is obvious from the above that

s2 increases without bound as k - . Figure 13 compares value of a o(0) computedm c
using (17a) and a numerical integration of (9) using n (r). Whereas the curves

for numerical integration of (9) show no variation once k > 1.0, the plots of
c --

(17a) continue to change with the greatest change occurring at low wind speeds.
-1

We also note that as kc increases beyond l(cm)- , (17a) yields a o(6) vs. 0

curve which becomes increasingly flat. Thus, compared to a direct computation

of o (0) from n (r), we see that the mean-square slope approximation is highly

sensitive to spectral truncation. This observation is a consequence of the
2

fundamental property that sm is more sensitive to the high end of the spectrum

than ' (r), for r near zero.

The logarithmic dependence of mean-square slope on wind speed agrees

favorably with the data obtained by Cox and Munk [6]. That is, for an oil

covered sea, their mean-square slope data indicates a logarithmic dependence

on wind speed. Since the oil slick should attenuate the high wavenumber com-

ponents of the surface height spectrum, such a situation is analogous to spectral

truncation. For a noncontaminated surface, their data shows a somewhat different

dependence upon wind speed; Cox and Munk [6] interpret the curve to be linear

while Phillips [1] maintains that the dependence is still logarithmic but with

a change in spectral constant 0. Further oceanographic analysis and data will

be required to resolve this point.

*for r C (0,R), or that range of r which influences the o(08) integrand.
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3.4 DIRECTIONAL EFFECTS

To this point only isotropic wavenumber spectra have been considered,

but a meaningful analysis must take account of angular variations in the

wavenumber power spectrum. Unfortunately, two-dimensional wavenumber spectra

are extremely difficult to obtain; two such spectra are available from the

work of Cote et al. [15] and of Longuet-Higgins [17], and the ao result will

be examined for each of these directional spectral forms.

A point of possible confusion arises in connection with the directional

spectra and the so-called r(or 1800) ambiguity in the two-dimensional wave-

number spectrum T(k). Because (k) is the Fourier transform of a real surface

autocovariance function p(l), the necessary assumption of spatial homogeneity

and, hence, the even synmetry of p(e) in I leads immediately to (2) being even

in k, i.e., I4) = I(-k) or for r in polar form (k,#), '(k, ) = T(k,=-r).

Conversely, if T is a spectrum such that 'I(k,P) # (k,#-7) then p(2) found by Fourier

transforming this Tf(k,#) will have imaginary components and will lead to

erroneous results if used in the o0 integral.

In most oceanographic literature, the ambiguity has been removed by ap-

plication of additional physical information. That is, a surface-based ob-

server knows which direction the wind is blowing and can remove the ambiguity

for at least the longer ocean wavelengths. If the barred * denotes the directional

spectrum as used in oceanographic literature, the correct spectrum to use in

obtaining p(-) for the ao problem is as follows:

T(k, ) = G [T(k,$) + (k, -r)] ,

Here, G is a normalization constant to preserve proper mean square height, and

T(k, ) is the "oceangraphers' directional spectrum". The expression is in

effect a recipe for putting the r ambiguity back into the problem. Cote et al.

[15] have obtained the following approximate directional spectrum expression

from stereo photos taken at 18.7 knots;

0 Z <~< 3

c(k, ) = 2 2

(18)
S c(k) F(k,) I 1 < 7/2
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where

F(k,4) = [1 + (0.5 + 0.82e- b k ) cos 21 + 0.32e-bk cos 4#]

The factor b is 3.6(v4) for k in centimeters and v in knots and the wind

is assumed to be blowing from the direction of 4= 0. Even though (18) is

only approximate for 18.7 knots, for purposes of this study it will be

assumed to be valid for all wind speeds.

The two-dimensional spectrum / (k,4) follows from the previous def-
c

inition, i.e.,

Nc(k, ) = Sc(k)[2F(k,4)] (1/2) , 0 _ 4 5 2 7r

After replacing Sc(k) by Sa(k) and performing the 4,-integration, the two-

dimensional height correlation function becomes

pn ) 2 J (kr)-J2(kr)[0.5 + . 8 2 eb ]cos2k + J 4 (kr)(.32)e cos4i

0

Sa(k)kdk . (19)

With the following substitutions

po(r) = 2 f Sa(k)Jo(kr)kdk
h

m

0.5

(r= 0.5 Sa (k)J2 (kr)kdk

0

P2 2 (r) 0.82f S(k)J2 (kr)e -bk
2kdkP2(r) h 2

m

0

0.32 -bk
p =(r) = 2 Sa(k)J4(kr)e 2kd k
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equation (19) becomes

Pnc(r, ) = po(r) - [P2 1 (r) + P 2 2 (r)]cos20+ P4 (r)cos 44 . (20)

P(r) is the correlation function for the isotropic spectrum (pn(r)) and

is given by equation (7). The P2 1 (r) function may be integrated directly,

i.e.,

3
((ar) 3 2

P21 (r ) = 16 Kl(ar) +  (ar) K (ar) (21)

The equation for P2 2 (r) may be expressed in the following form,

-br-4bgr+a2) + 2g
P2 2 (r) = 2.46 a2 J 2 (r)e +a + (22)

-bT
Due to the additional factor e , the integrand in (22) converges to zero

before the Bessel function starts to oscillate, even for r relatively large.

Integrals of this type may be evaluated by a slightly modified form of

Laplace's method [16], with the result being

P22 (r) ~ 0.335 J 2 ( 1 ~ ) (23)

In a similar fashion, the following is derived for P4(r);

p44 (r) - 0.125 J (1i 4 7) (24)

The various r-dependent components given in equations (20), (21), (23), and

(24) are graphed in Figure 14. This plot indicates that P4 (r) can be neglected

in comparison to the other components. Since the integral for ao is sensitive

to [1-pnc(r)], Figure 15 shows that the isotropic component, [l-po(r)], dominates
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the ao integral. Neglecting P4 (r), the ao integration becomes

R
o 27

a o(0) = , ej 2 Krcos4sin0
2r cos 0

o o

e-42h cos 0[1-p + (p 2 1 + 22)cos 24]rdrd4

Using the following expansion and r= 4
K2h

2 cos2
m

e- r(21 + P22 ) cos2= Io [r( 2 1 + P2 2)] + 2E (-l)n n[ F( 2 1 + P 2 2 )]cos(2nq)

n=1

the 0(0) integral is
R

o i2 I e- F[ il- po]+jarcos

(0) 2 2cos 2 0
o o

Io (P 21 + P22 + 2-(-1)nI n[r ( 2 1 + P 2 2)]cos(2n rdrd4
n=1

wherea = 2Ksin0. Accomplishing the 0-integration leads to

2 2 R

a 0 - 20 e ip] Jo (ar) + 2 InQ)J2n(ar) rdr (25)

with k = r(P21 + P2 2 ). For normal incidence (0=0), (25) reduces to the following

form;

2 2 R
o k 2h2 [1- 1 2h2a (0) = e m I[4K (p 2 1 + P22)] rdr (26)
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Although the Io function grows exponentially for large argument, the

exponential factor in the integrand of (26) is much more dominant. When

the integral in (26) was accomplished numerically, the resultant value of

o(0) differed by less than 0.2dB from the isotropic case. For 0>00, the

infinite sum in (25) is somewhat cumbersome and difficult to treat numerically.

However, if the small (ar) approximations are made, i.e. ,

1 - po(r) z 1.5 log(-) (ar)2

3 1 2
P21(r)- log( ) (ar)2

p22(r)- .04 (ar) 2 *

and analytic continuation is used to convert In(() to Jn(jt), i.e.,

.nlr
I () = e-~ Jn (j),

equation (25) may be expressed as follows

R
2 IQ 12 -2 2

0) = e-Clr (c 2r2)J(ar) + 2 e (c r )J2n(r) rdr

Srcos 2 n=l

where

c1 = K2Ocos2 Olog(I)

.12 2 1
c 2 = K 2 cos2 log(-) = jc

*P22 is much less thanp21, thus p21 +P2 2  p21 for (ar) <<1 and a<<l.
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The above integral may be evaluated in closed form with following result

2 rcs2 ( a12 c22

2 2 1 2

ns 2+ c

orr

+2 2 e 1 2

02 o2
2rcos 2 1 +42

n=l1 1 42

or

2

O 2 2 °  e 1 c3  c3 a

2rcos20 o 4c1 c3 )

2 2
SC - c3

+2 In 4 234c 2
n=1 1 3

Since the series in I (z) can be summed to eZ, the following equation results:
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2 2 eo I
O (0) =  e

2rcos0 2 2
C c31 - c3

or, finally,

2 -tan 0
I exp L1.251(/a) (26a)

0(0) = exp27rcos48 0.971og(l/a) (26a)

Comparing (26a) with the equivalent approximate relation for the isotropic

spectrum (equation (10a)), it is obvious that there is little significant

difference. It has, therefore, been conclusively demonstrated that the Cote,

et al. two-dimensional spectrum and the isotropic spectrum lead to the same

scattering cross-section when the two spectra yield the same mean-square

height.

A second directional spectral form which has found rather wide acceptance

in the oceanographic community is that proposed by Longuet-Higgins, et al. [17],

i.e.,

L(k,4 ) = SL(k) Icos 2 1 2s(k) (27)

where the parameter s(k) is a function of the quantity v4/10Jg* and g is the

gravitational acceleration constant. Measurements [17,18] indicate that s(k)

ranges from about twenty (0.164 vA <0.1) to zero (0.164 vv; l). That is,

for a small wavenumber-velocity product the directional spectrum becomes almost

unidirectional while for a large k-v the spectrum is nearly isotropic. In

light of some oceanographers' feeling that the capillary waves spread almost

isotropically, this spectral representation would appear to be somewhat more

realistic than the Cote, et al. form.

*For k in (centimeters)-l and v in knots, this factor becomes (0.164) v.A/.
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The two-dimensional spectrum follows from previous definition, i.e. ,

L(k,4) = SL(k) G(s) cos2s + Isi.2s (28)

where G(s) is a normalization factor. Assuming that SL(k) = S (k), G(s)

may be found by requiring that the mean-square height is the same as for the

isotropic spectrum considered in Section 2. That is,

S27r

hm 2 f L(k,,) kdkd#,
m 6a2 27r f f L

0 0

which leads to the following form for G(s),

¢ r(s+1)
G(s) = r(s+l)

2 F(s+1/2)

where F( ) is the gamma function. The two-dimensional correlation function is;

2r

P L(r,O) = 2 Sa(k)G(s) cos 2s+ Isin 2

0n 0
o o

Sejkrcos( -)kdkd . (29)

Expanding the phase term in the integrand of (29) and performing the 4-inte-

gration results in the following:
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PnL(r,~) = - -  Sa(k)I J (kr)

h 0

m(s+l)

+ 2 (-l)nJ2n(kr)cos2n { r F2(s+l-n) kdk
2nl L r(s+1+n) r(s+-n)

For the time being, let the infinite sum be approximated by its first

two terms, i.e.,

L(r,#) 1rk 2 __s(s-l)

P L r, 1 (k)Jo(kr)kdk - cos2f S(k)J 2 (kr) s(s-1) kdk
n h 2 a h 2 a (s+1)(s+2)

m m o
O

2 s(s-i)(s-2)(s-3) 1+ 2 cos4 S (k)J 4 (kr) (s+4) (s+3) (s+2) (s+l) kdk (30)

m
0

Since s(k)~0 for (.164)v vi 1, the last two integrals in (30) will be zero
A

for k > 200a = k. That is

A0k0

SL (r, ) Sa (k)J (kr)kdk h2 cos24 S (k)J2 (kr) (s+l)(s+2) kdk
hm2 ja o h2a 2([+(s2l)

m m
o o

A
k

+ 2 cos4 (k)J4(kr) (s+4)(s 2)(s+l) kdk (31)
h m2 Jsa 4 (s+4)(s+)(s+2)(s+l)j

m

Because of the dominant (and peaked) behavior of Sa(k) and the finite limits,

the last two integrals in (31) may be evaluated by the asymptotic method pre-

viously applied [16], i.e.,
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P nL(r,) p (r) + 1.44 -cos(2)J2(kr ) (s+l)(+2) k

+ cos4J 4 (kr) s(s-1)(s-2) (s-3)
4 (s+4)(s+3)(s+2)(s+l)

where k = 1 . 2 9 a. When k = k, (.164)vvk = 0.08 and s(k) 8 [17], thus

s(s-1) = 0.62
(s+l)(s+2)

k=k

s(s-1) (s-2) (s-3)
(s+4) (s+3) (s+2) (s+l)

k =k

and

PnL(r,(p) ; p (r) - 0.89J 2 (kr)cos24 + 0.176 J4 (kr)cos4 . (32)

For purposes of o (0) computation, it is unnecessary to carry the last term

in (32) since it has little effect on the subsequent integration. The pro-

cedure for calculating o (0) is exactly the same as in the case of the Cote,

et al. spectrum and need not be repeated. The approximate closed form re-

sult is;

[ -tan2
2 exp [f[log(1/a) + 0.07]

2ircos40 2r [log(l/a)] - 0.07 (32a)
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As in the case of the Cote, et al. angular dependent spectrum, the Longuet-

Higgins, et al. spectral form is seen to yield the same scattering cross-

section as the isotropic spectrum. Since both of the spectral forms considered

have significantly different behavior, it may be concluded that angular variation

in the surface height spectrum has little, if any, effect on the near-normal

incidence scattering cross-section. These results have a very significant im-

pact on the ground truth requirements for a near-normal incidence backscattering

experiment, such as in the case of Skylab. That is, it would appear that the

two-dimensional spectrum need not be measured and simple wave-staff measure-
2

ments will suffice, i.e.,to yield S (k) and h . Of course, the spectra studieda m
in this report are only truly applicable for fully developed, no swell, large

fetch seas. Consideration of what happens when any of these conditions are

violated must be necessarily left to future studies.

This result for directional effects together with the..gravity-range dom-

inance of the ao integral lead to the important conclusion that spectral infor-

mation needed as ground truth for a a experiment could be acquired at a single

point on the ocean's surface by what will be called below a "R(t)-determining

experiment." First, however, a number of spectral relationships must be briefly

reviewed and, in particular, a relationship between the surface frequency power

spectrum and S(k) will be established by assuming the gravity-range dispersion

relation.

Let the ocean surface coordinatesbe (,j , t) where I is measured in the

plane of the ocean surface, is the surface elevation relative to the plane

of mean sea level, and t is time. We will write as a function of f and

t, i.e., = (,t). We will make the usual assumptions of stationarity in t

and _, and then define a generalized surface autocovariance.function Z(f,t) by

Z(-,t) = rf( + ~ t + t) r , tl d dt1 (33)

1 t1

The three-dimensional (two spatial, one temporal dimension) Fourier transform

of Z(',t) is the generalized ocean surface height power spectrum X(1k,w) where 1Z
is the wavenumber and wis (radian) frequency.
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Let us also define two less general surface autovariance functions

R(t) and p(C) by their relationship to Z(-,t) as follows:

R(t) = Z(r,t)
(34)

p(f) = Z(rt) =

(35)

Note that (34) implies that R(t) could be determined if one had an

instrument at a single point in space (- = o) which produced a perfect

record of vs. t for a sufficiently long t. Such an instrument might be

an idealized wave-staff, fixed point laser altimeter, etc.

Similarly p( ) requires an instrument producing a record of vs. r

over sufficiently large T for a fixed time (t = o). Some sort of photo-

graphic method seems implied here such as stereo photographs or possibly

a Stilwell or related process.

Examining departures from the assumed perfect instruments, there are,

clearly, difficulties in experimentally estimating either R(t) or p(I) but,

of the two, the R(t) estimation process is much the easier. It is the

purpose of this discussion to show that determination of R(t) is sufficient

for purposes of a o experiment ground truth program.

Continuing with the general power spectrum properties, two more

restricted (and more familiar) surface height power spectra may be defined

in terms of the general spectrum X(k,w) as follows;

f() = x(k,w)dk, the frequency spectrum (36)

k
and

(k) = X(~,w)dw, the directional wavenumber spectrum. (37)

Also, 4(w) is the one-dimensional (time) Fourier transform of R(t), and \(k()

is the two-dimensional (spatial) Fourier transform of p(r). The wavenumber

spectrum *I(r) can be written in a polar coordinate form as lI(k,v) with ' the
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angle relative to the windspeed (assumed equilibrium conditions and a

unidirectional steady wind having been present over infinite fetch and

infinite time) and k the radial wavenumber. Also, without loss of

generality,

*(k,4) = S(k)F(k, ) (38)

and the isotropic assumption of the earlier part of the chapter is simply

the assumption that F(k,4/) = 1 for all k and \4.

There is, in general, no simple relationship between S(k) and 4(w)

unless a unique relationship can be established between w and k. In many

cases, however, the small amplitude gravity-range dispersion relation

w = gk provides a reasonable approximation to surface behavior, and we

will now assume this relationship valid and examine the consequences of

this assumption. In this case for any arbitrary wavenumber k1 the gen-

eralized spectrum becomes

x(k1+) = I(kl) 6 (W W) (39)

because with the delta function the dispersion relation asserts that for

any 1"k1 there is an w-contribution only at w = wl. Then equation (36)

for @(w), in terms of X(,w), leads to

S(W") - () ) d 1

k
1

or in polar wavenumber coordinates,

t(w) = P(kl ) kldk d (40)

41'=-r kl=0

Then using k1 = 12/g, dk1 = 2w1 dwl/g, and from (38), '(k1, ) = S(wl2/g)
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and because of the properties of the 6-function,

(w) = S(w 2 /g) F2/g,) d(42)

Equation (42) may also be written entirely in terms of k with the result

1/2
S(k) = g  2 ( gk)

2k3 / 2  (2k r
(43)

F (k,4 )d4

-T

Recall that 4(w) is derived from R(t), the single-point and the experimentally

more desirable measurement. Equation (43) says that if the gravity wave

dispersion relationship can be used and if the #-integration can be performed,
then S(k) can be derived from F(w) and thus from R(t). For the Cote, et al.

and Longuet-Higgins, et al. spectra, F(k,'#) was defined so that

f F(k,4)d = 1

--

and (43) reduces to the following:

1/2

Sc(k) 2k3/2 " (44)
L 2k

The result of the examination of directional effects on ao concluded

that Sc(k) dominated the so integral for an S c(k) of a particular form, i.e.,
L L

S c(k) = S (k). It would be very surprising to find that the earlier conclusion
L

in this chapter regarding k-ranges of importance to ao were to change

radically for small changes in the exact form of S(k), so we expect the general
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conclusion concerning the gravity range dominance of a to remain valid.
2

This in turn supports the use of the dispersion relation w = gk in the

derivations just presented. The overall conclusion then is that for

directional spectra described by a Cote or Longuet-Higgins form, the aO

ground truth needs concerning spectral information are met by knowledge

of what we have called R(t) since from R(t) we get 4(w) which through (44)

provides the needed S(k). This is an important result given the difficulty

of a p(')-determining experiment relative to a R(t)-determining experiment.
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3.5 SUMMARY & CONCLUSIONS

The subject of this chapter has been the relationship between the ocean

surface wavenumber spectrum and the backscattering cross-section a obtained

by evaluating the physical optics (or tangent plane) backscattering integral

for near-normal incidence microwave scattering. A particular isotropic

spectral representation was chosen for the ocean surface based on its k- 4

limiting behavior for large wavenumber, the existence of a Hankel trans-

form (and hence a closed-form expression for the autocorrelation function),
and a not unreasonable fit to the limited low-k data available. This last
behavior was not originally expected to be particularly important because of
previous analyses based on series approximations or asymptotic expansions

which had argued that scattering would be heavily dependent. on capillary-

range wavelengths; these arguments were in general based on Oo being propor-

tional to mean-square slope of the ocean surface [10].

Numerically evaluating the physical optics integral after obtaining the
autocorrelation function for the isotropic infinite-extent spectrum assumed,
it was found that the behavior of the integrand could not be accurately des-

cribed by asymptotic solutions. A set of results was obtained for qo as a
function of wind speed and scattering angle which compared favorably with

Guinard's experimental data. These results indicated a saturation effect near
normal incidence and so predicted a negative result for o vs. windspeed

experiments.

Approximate expressions were developed for the correlation function

corresponding to a truncated wavenumber spectrum as a means of examining re-
lative importance of different wavenumber regions to the ao result. This

method showed that the ao integral was dominated by the long wavelength range

of the ocean spectrum and was effectively independent of the capillary range

contrary to predictions of mean square slope arguments as noted above. It

was found that for centimeter range rf wavelengths, ao depends heavily on

ocean surface characteristics in the ocean wavelength range of 0.06 to 60

meters, and therefore ground truth activities for support of near-normal in-
cidence radar scattering experiments should be planned on this basis.
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Finally the consequence of the assumption of isotropic ocean surface

spectra was investigated. The directional spectra of Cote et al. and Longuet-

Higgins et al. were assumed, and another set of approximations wAs developed

to obtain a two-dimensional autocorrelation function which was then used in the

physical optics integral. It was demonstrated that the dominant component for

the ao calculation was the isotropic component of p(r,O). Since a for near-

normal incidence depends on components in the gravity wave range, the gravity

wave dispersion relation is valid for the ocean wavelengths dominating ao

These results have the important consequence that the only ocean surface char-

acterization needed for ground truth is what Cote et al. call the "wave pole

spectrum"; that is, the frequency (power) spectrum obtained at a single point

on the surface (by a wave pole, or other means of obtaining a surface height

vs. time record) and transformed to wavenumber space by use of the gravity wave

dispersion relation.

3-52



REFERENCES

1. Phillips, 0. M., "The Equilibrium Range in the Spectrum of Wind Generated

Waves," J. Fluid Mech., 4, pp. 426-434, 1958.

2. Pierson, W. J., Jr. and L. Moskowitz, "Proposed Spectral Form for a Fully

Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigrodskii,"

J. Geophvs. Res., 69, No. 24, pp. 5181-5190, 1964.

3. Hess, G. D., G. M. Hidy, and E. J. Plate, "Comparison Between Waves at

Sea and in the Laboratory," J. Marine Res., 27, No. 2, pp. 216-225, 1969.

4. Bass, F. G., et al., "Very High Frequency Radiowave Scattering by a

Disturbed Sea Surface," Trans. on Antennas and Propagation, AP-16,
No. 5, pp. 554-568, 1968.

5. Valenzuela, G. R., et al., "Ocean Spectra for the High Frequency Waves

Determined from Airborne Radar Measurements," Journ. of Marine Research,

29, pp. 69-84, 1971.

6. Cox, C. and W. Munk, "Measurement of the Roughness of the Sea Surface

from Photographs of the Sun's Glitter," J. Opt. Soc. Am., 44, pp. 838-850,

November, 1954.

7. Hagfors, T., "Backscattering from an Undulating Surface with Applications

to Radar Returns from the Moon," J. Geophys. Res., 69, No. 18, pp. 3779-

3784, 1964.

8. Peake, W. H., D. E. Barrick, A. K. Fung, and H. L. Chan, "Comments on

'Backscattering of Waves by Composite Rough Surfaces," IEEE Trans on

Antennas and Propagation, AP-18, pp. 716-726, September, 1970.

9. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, NBS

Applied Math Series, Vol. 55, U.S.G.P.O., pp. 488, June, 1964.

10. Barrick, D. E., "Rough Surface Scattering Based on the Specular Point

Theory," IEEE Trans. Antennas and Propagation, AP-16, pp. 449-454, 1968.

11. Hagfors, T., "Relationship of Geometric Optics and Autocorrelation
Approaches to the Analysis of Lunar and Planetary Radar," J. Geophys. Res.,
71, pp. 379-383, 1966.

12. Fung, A. K. and H. L. Chan, "Backscattering of Waves by Composite Rough
Surfaces," IEEE Trans. Antennas and Propagation, AP-17, pp. 590-597,
September, 1969.

13. Barrick, D. E., "Unacceptable Height Correlation Coefficients and the
Quasi-Specular Component in Rough Surface Scattering," Radio Science,
5, pp. 647-654, April, 1970.

3-53



14. Guinard, N. W., "The Variation of the RCS of the Sea with Increasing
Roughness," Microwave Observations of the Sea, Proceedings of the
Spacecraft Oceanographic Project, pp. 175-203, 11-12 June, 1969, NASA
HQ, Washington.

15. Cote, L. J., et al., "The Directional Spectrum of a Wind Generated Sea
as Determined from Data Obtained by the Stereo Wave Observation Project,"
Meteorological Papers, Vol. 2, No. 6, pp. 88, New York, New York: New
York Univ. Press, 1960.

16. Evgrafov, M. A., Asymptotic Estimates and Entire Functions. Gordon
and Breach Publ., New York, pp. 20-22, 1961 (English Translation).

17. Longuet-Higgins, M. S., D. E. Cartwright, and N. D. Smith, "Observations
of the Directional Spectrum of Sea Waves Using the Motions of a Floating
Buoy," Ocean Wave Spectra, pp. 111-131, Englewood Cliffs, New Jersey:
Prentice-Hall, 1963.

18. Ewing, J. A., "Some Measurements of the Directional Wave Spectrum," J.
Marine Res., 27, No. 2, pp. 163-171, 1969.

19. Chia, R., "The Theory of Radar Backscatter from the Sea Ph. D.
Dissertation, University of Kansas, 1968.

20. M. I. T. Staff, The Terrestrial Environment: Solid-Earth and Ocean Physics,
NASA Contractor Rpt. No. NASA CR-1579, Prepared by MIT, page 3-9, 1970.

21. Schule, J. J., L. S. Simpson, and P. S. DeLeonibus, "A Study of Fetch-
Limited Spectra with an Airborne Laser," J. Geophys. Res., 76, No. 18,
pp. 4160-4171, 1971.

3-54



CHAPTER 4

DISCUSSION OF ALTIMETER SEA STATE BIAS AND SEA-TRUTH

INSTRUMENTATION CONSIDERATIONS

4.0 BACKGROUND

If a radar altimeter were to illuminate a perfectly smooth, flat and

highly conducting ocean surface, there is no question that the time delay

between transmission and reception of the radar pulse would be proportional

to the radar's height above the surface. When the surface becomes rough,

the proportionality will still hold provided the probability density of the

surface height, as seen by the radar, is symmetric about the true geometric

"mean-sea-level" (MSL). If the height probability density, as seen by the

radar, is not symmetric about the true geometric MSL, the height above the

mean surface as measured by the radar will differ from the true geometric

height. This difference between the true and radar measured heights is due

to the so-called sea-state bias. For conventional applications, such a

difference would not appear to be significant, however, for precision altimetry

the difference may be on the order of the desired altitude accuracy. Although

the difference could conceiveably be calibrated out, such an approach would

require knowledge of the scattering surface which is most certainly not known,

at least in real time. For this reason, the sea-state bias problem is of great

importance to precision radar altimetery.

Since Yaplee, et al. havepresented the only experimental evidence of the

existence of sea state bias, their work will be discussed in this report. In

particular, we present one interpretation of their results in Section 4.2 which

indicates that the backscattering cross section of the ocean's surface as

observed by the radar may be considered to be a linear function of the wave

height below mean-sea-level. That is to say, the average power backscattered

by the wave troughs is greater than the average power backscattered by the

crests on the ocean's surface. It should be noted that such reasoning is not

in conflict with the backscattering cross-section analysis presented in

Chapter 3 since that analysis applied only to the CW cross-section and not to

the time or range dependent a

In Section 4.3 we present an initial investigation of the experimental

techniques required to assess the magnitude of the sea-state bias problem. In

particular, we first attempt to resolve what statistical information on the

ocean's surface is pertinent to the problem. We conclude that flying a laser

profilometer over the surface of the ocean would be the most accurate method

of obtaining the desired statistics, although this approach does have some
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shortcomings. In the process of investigating the various sea-state measure-

ment methods, we found some shortcomings in the Stilwell photographic technique.

Although the Stilwell method does not appear to be applicable to the sea-state

bias problem, it has been proposed for use in obtaining the statistics required

for the CW backscattering cross-section discussed in Chapter 3. For this

reason, some comments on the Stilwell technique are presented in Section 4.4

and it is concluded that further refinements in the method will be required

and that it is premature to rely on the method as the principal sea truth

sensor.
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4.1 The Bias Problem

In earlier reports [1, 2], we concluded that for times and distances of

interest in the satellite altimeter problem, the sea surface scattering was

incoherent and independent. In the following discussion it will be assumed

that the satellite antenna is pointed at nadir and that the antenna beam-

width is sufficiently broad that antenna effects can be ignored during the

leading edge (or "ramp") portion of the radar return waveform. Transmitter

and receiver bandwidths will be ignored, and we will assume a sufficiently

large number of pulses that we have adequate estimates for sea surface en-

semble averages. It is convenient to talk in terms of a large number of

scattering regions or "scatterers" distributed on the ocean's surface, and

without loss of generality the vertical or z-direction distribution of these

scatterers can be described by a probability density function p(z). The

z-axis origin is at the plane of mean sea level. It is worth noting that

p(z) can be written as an equivalent p(t) describing the distribution of radar

return times relative to the time for a flat-sea return by use of the two-way
relationship t = 2_z (c is the speed of light); this p(t) is the time functionc
to be determined from the waveform analysis discussed in Chapter 2 of this

report.

The quantity p(z) will also be referred to as the radar-observed wave-

height distribution, as opposed to the "true" waveheight distribution q(z)

which would be measured by a perfect profilometer or an idea wavepole. The

bias problem concerns the possibility of a relative shift between the means

of p(z) and q(z), while the objective of the altimeter is to determine distance

to the mean of q(z). This possible shift or bias may be a function of rms

ocean surface roughness, and this means that the bias could not simply be

treated as a constant systematic error since the altimeter looks at regions
of different ocean roughness.

It is possible to restrict the bias problem to asking to what extent

p(z) is an odd function of z since we showed earlier [2] that for a scattering

process which could be described by an equivalent p(z), the receiver power was
completely symmetric in behavior about the half power point T1/ 2 = 'R + T/2
if p(z) was an even function of z. Here, T1/2 is measured from the start of
transmission of a radar pulse of width T, and TR is ranging time from satellite
to the plane z = 0 and back. By "symmetric in behavior about T1 /2" we mean
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that for any time increment, A, exactly as much additional power (in excess of

that expected if the sea were completely flat or smooth) is received at time

t_ = TI/2 - A as is lost (again relative to the flat sea case) at time t+ =

T1/2 + A. Thus for any tracking scheme which is not affected by this effect

of signal removed at t+ and added to t_ no sea state bias is introduced if

p(z) is even in z; both double-delay differencing and the S-193 split-gate

tracker satisfy this tracker criterion.

With but one exception, no experiments are available to allow estimates

of possible sea state bias, and one can only regard this as an open question;

it is important to realize that there is no solid basis for the often-made

assumption that p(z) = q(z). The one exception is the experiment of Yaplee et

al. [31which is discussed immediately below. Following that, other experi-.

mental techniques are discussed for possible application to the bias problem.

4.2 Yaplee's Data and Sea State Bias

The experimental data recently published by Yaplee et al. [3], on their

nanosecond radar measurements, represents the first instance in which the

sea state bias problem has been experimentally investigated. The bias figures

given in Yaplee are much larger than generally anticipated for low sea state;

however, the data base is quite limited. It is of interest at this time to

examine Yaplee's data in terms of its inferences regarding the radar p(z).

That is, on physical grounds we expect the radar wave height profile to be

a distorted version of the wave height profile. His data may be interpreted

as indicating that this distortion appears as mainly a displacement in the

two distributions. In the following we find that this apparent displacement

can be accounted for, within experimental error, by assuming a linear wave

height dependence in the radar cross-section data. Much more data will be

needed to test the generality of this linear model.

Yaplee's experimental configuration is-that of a beamwidth limited

exploration of the sea surface. The surface area investigated is that due

to an essentially collimated beam. The data we wish to discuss are contained

inYaplee's Figures (6a), (6b), (7a), and (7b); these are reproduced herein for

convenience. Figures (1) and (2) represent radar cross-section per unit

projected area when they occur. These figures do not reflect the probability

of an echo occurring at a particular delay and they represent only two of the

infinitude of possible sea surface conditions.
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In attempting to model rough sea effects, it has been universally

assumed that the cross-section is a function of the area of the ocean

surface illuminated. There can be no large quarrel with this assumption;

however, there is presently no basis for assuming that the scattering cross-

section per unit area is independent of height above "mean sea level," MSL

(and only a function of the projected area above that height). Figure (1)

and (2) can, in fact, be interpreted as showing that radar cross-section

of the ocean surface over the range of wave heights increases essentially

linearly with increasing distance below the wave crests. For these figures

the slope of the linear increase is approximately

.185
ma h for Figure (1) (calm seas)

.141

m = - for Figure (2) (21 knot wind)a h

where h is the rms wave height.

If we take the geometrical centers of the delay expanse in Figures (1)
and (2) as identifying mean sea level (MSL), then the variation of radar

cross-section about MSL is given by a(z)

a(z) = o ( 1-m )

where z is measured positive above MSL, and ao is the conventional radar back-
scatter cross-section as in Chapter 3. We can take Yaplee's result in Figures
(3) and (4) as an evaluation of p(z), which can therefore be interpreted as the
product of two terms:

p(z) = q(z) a(z)

where a(z)o describes the variation of radar cross-section per unit area and
q(z) is the probability of finding a surface element z meters above MSL. Note
that o(z) can be experimentally determined by Yaplee's data, and q(z) can be
obtained from wave staff data.
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We might expect that q(zO may well be of the form proposed by Pierson

and Mehr [5]. However, for the conditions at the time the data of Figures

(1) and (3) were taken (calm sea-swell), the skewness parameter X is ex-

pected to be quite small. Accordingly, we take

q(z) = 1 exp z
2 2h

We are concerned, therefore, with the behavior of q(z) and p(z) = a(z)

q(z).

4.2.1 Numerical Calculations

In Figure 5, three curves are plotted, i.e.,

p(x) = C(x) q(x) = exp - [1-mx] weighted Gaussian

q(x) = exp - -- true Gaussian

q(x + .175) = 1.02 exp - (x -2.175)2 displaced Gaussian

In these curves, which attemnt to model the dt in Figures (1) and (3),

m is taken to be .115. Comparison of the curves for p(x) and q(x) indicates
that the p(x) curve is displaced from the wave height distribution, just as is
the data in Figure (3). The x variable used in these calculations is the
height normalized by the rms wave height. From Figure (3), we find that the
rms wave height expressed in nanoseconds is 1.725. The delay between the peaks
of the two curves (p(x) and q(x)) in Figure 4 is therefore .30 nanoseconds.
The third curve (merely the Gaussian curve shifted and re-normalized) shows the
extent to which p(x) can be approximated by a shifted Gaussian curve. The
reader may satisfy himself that Yaplee's radar data in Figure (3) can be ob-
tained by simply shifting the wave staff data .3 nanoseconds to the right.
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It would appear that we can explain the shift in Yaplee's radar curve

in Figure (3 ) by simply accounting for the height dependence of the

scattering cross-section with the o(z) term. Note that for this sea

condition, the original Pierson-Mehr formulation cannot support the data--

it would require a A of approximately .37 for a calm sea! Note further that

the Pierson-Mehr correction to a Gaussian curve is essentially a cubic
Xx 2

[1 + (x2 -3)] and that there will be three places at which the Gaussian

intercepts the composite curves. Yaplee's data show only one intersection

between the radar and wave staff data--which would be expected if the radar

data are just shifted wave staff data. This may be taken as further proof

that for this sea condition the wave staff data are essentially Gaussian.

4.2.2 Effects of Cross-Section Varying with Height Above MSL

The data of Figures (1 ) and (2) suggest that for swell conditions,

p(x) might be represented by:

p(x) = exp - -- [1-mx].

It is further shown that this curve can be approximated by a renormalized

shifted Gaussian. To get an estimate of the shift:

2
dax) = e-x/2 [-x(l - mx) - m] = 0dx

xo = shift to maximum = 2 2 +

zo = height shift of maximum = h( . . m)2 + 1)

As the slope of the cross-section versus height curve (Figures (1) and

(2), for example) increases, the offset asymptotically approaches the rms

wave height and the curve becomes more and more non-Gaussian. For moderate

values of m, the curve should be a reasonable offset. Such an offset in p(z)

will result in an identical bias error in the altimeter experiment.
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4.2.3 Possible Variation of Offset with Sea State

Under conditions of a true wind-driven sea, one might expect that

the variation of radar cross-section with height above mean sea level may

change. It is not inconceivable that "m" might decrease. With increasing

wind speed, one might also expect the value of X, the skewness parameter

in the wave height distribution, to increase. The overall effect on sea

surface bias will still be contained in the formula for p(z)

p(z) = exp -2h 1 - 1 - m 

These detailed variations with wind speed and sea state are not known and

must be measured. In any event, Yaplee's data makes a clear case for the

inclusion of a term which reflects the increasing radar cross-section per

unit area with increasing distance below the wave crests.
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4.3 Experimental Techniques Related to the Bias Problem

One possible approach is to determine what sea surface geometric features

actually are important to the electromagnetic scattering process, then to

measure a sufficiently large ocean profile to be able to derive reasonable

estimates of the z-variation of these features. Which features are important

will depend on which scattering theory is assumed, and the available comparisons

between theory and experiment are largely inconclusive for the available

scattering models so no strong basis exists for accepting or rejecting any of

these.

We choose for the moment only two of the many different scattering models,
the Kodis [5] specular point model, and Schooley [6] facet model as used by

Sledge and George [7]. In the Kodis model, the scatterers are identified

with specular points, local regions on the surface (of zero-slope for normal

incidence backscattering) whose relative radar scattering is a function of

the radius of curvature at the specular point; the model is based upon physical

optics. In contrast to this, the various phenomenological facet theories

define a facet by some arbitrary criterion and derive scattering properties

based upon a distribution of flat plates whose dimensions are given by the

facet lengths. Schooley defined facet angle by the tangent to the wave profile

and the facet length by requiring that the actual profile deviate less than

Xrf/10 from this tangent. A distribution of facet length vs. angle was exper-

imentally derived from a series of photographs of waves in a windtunnel wave-

tank, and Sledge and George later used this experimental result to derive a

radar scattering cross section on the flat disk basis.

It is important to realize that all backscattering theoretical work to date

has been directed toward a*, the backscattering cross section which would be

measured by a CW experiment and that whole-surface averages of the relevant

surface geometry properties have been used. This is inadequate for the non-CW

processes of a radar altimeter and the appropriate surface properties must be

defined as a function of z. Specifically, surface geometry should be used to

determine the effective cross-section as a function of height 0(z), and the

relationships between a(z), p(z), ao, and the geometric waveheight distribution
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q(z) are:

p(z) = 0(z) q(z)

o =f p(z) dz

The next paragraphs discuss geometric or profiling types of approach to

the determination of a(z) as a means of estimating bias to be expected. The

alternative to a geometric approach is a pulse amplitude vs. time experiment

of the Yaplee type, and the possible use of a laser profilometer for this is

discussed later.

4.3.1 Geometry Measurements

Although the ocean's surface is anisotropic, we will assume in this

entire section that the surface is isotropic and can be represented adequately

by a one-dimensional (spatial) spectrum. It will turn out to be quite difficult

enough to find experimental evidence to answer the sea-state bias question

for the isotropic sea, and we will wait until this problem is in better shape

before moving to the increased complexity of the anisotropic sea. The

immediately obvious difficulty is that the electromagnetic theories require

statistical descriptions of the spatial properties of the sea at a given

instant of time while the simpler oceanographic information to experimentally

obtain (by means of a wave staff) gives information on the time behavior of

a single spatial location. One can derive the spatial statistics from the

temporal statistics only to the extent that the wave dispersion relation is

valid. Let us first assume that a perfect one-dimensional ocean surface

profile is available for some instant of time and describe the processing of

that record for the specular point and the facet models.

To get at the sea-state bias problem via the specular point theories, we

need to determine the joint probability density of z and its first and second

derivatives, p(zxx,zx,z). For any fixed height z above mean sea level then we
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would have p(zxx,Zx,z) which would allow evaluation of quantities appearing
in scattering theory. Specifically, the relative number of specular points
for vertical incidence radar backscattering would be given by integrating
p(zxx,O,z) over the range of allowable zxx for the different z values of
interest to find the quantity a(z). Using the geometric distribution q(z)
and o(z), one could then examine the symmetry of p(z) about z = 0. In
practice the determination of p(zxx,zx,Z) would be an enormous job even
given a perfect profile record and one would instead find several pairs
of density functions p(zxx,0, + Zl) and p(zxx,0 , - Zl) , p(zxxO, + z2),
and p(zxx,0, - z2) etc., symmetrically located at +z1, ±z2 , etc., relative
to mean sea level, z = 0. These pairs of corresponding "horizontal slices"
through the ocean surface would then allow comparison of p(zl) with p(-zl) ,
p(z2) with p(-z 2), etc. In this way we should be able to fix limits on the
sea-state bias.

The other approach is to define facets in the manner of Schooley. Then
processing the profile data to find facet length Z, facet angle a, and the
facet height relative to mean sea level z, the joint probability distribution

p(£1,al,a) can be determined. This again would be done at the pairs of z
values +z1, ±z2 , etc., to get the sea-state bias.

Given the perfect record assumed here, all of the above processing would
be carried out to determine the possible sea-state bias expected from the
several different possible scattering models. Actual details of the processing
of a real surface profile record would depend upon such factors as resolution,
noise,stability, length of record and so forth. Since a perfect record is
unavailable, let us examine next what kind of actual record might be obtained.

All of the preceding discussion has emphasized the need for a spatial
record, and methods which might give such information include Stilwell
techniques, wave staff arrays, stereo photographs, or some type of flying
profilometer. We will discuss these in turn, with the conclusion that a heli-
copter-borne laser profilometer represents the only possibility with even a
chance of yielding the required information.

First consider the Stilwell [8] technique of obtaining the two-dimensional
wave-number spectrum of the sea surface by optical transform analysis of a
photograph of the surface. This method looks promising for the future but it
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is not a fully operational quantitative method yet. Perhaps more important

for purposes of the sea-state bias problem, the Stilwell technique does not

produce the necessary information on variation with height of surface

geometry features (for instance, slopes and specular points). So although

the Stilwell technique may, with enough development, become important for

obtaining the overall surface backscatter cross-section (for CW measurements),

it will not be useful now for the bias problem.

Wave staff arrays have been described by Barber [9]; their drawback is

that the wavestaff spacing used must be half the smallest wavelength that

one wishes to study and, with our interest in ocean wavelengths comparable to

the incident 3 cm radar wavelength, the wave staff separation required becomes

prohibitively small.

Stereo photographic techniques can obviously reproduce the structure

of the ocean surface at a single instant, and their main difficulty is in

the cost of analysis of the photographs. The well-known SWOP project, des-

cribed by Cote et al. [10], resolved wavelengths down to about 60 feet.

Of more interest for the radar problem is a more recent series of measurements

performed July and December 1965 in a joint effort by the Applied Physics

Laboratory of the Johns Hopkins University, the Naval Research Laboratory, and

Oceanics, Incorporated. In this case the cameras were separated by

about 20 feet and covered a 20 by 20 foot area of the ocean surface with 60%

overlap. Various stages of this experiment were described by Katz [11], Val-

enzuela and Dobson [12], and Dobson [13]. The wave height is measured at 4mm

intervals in some of the analyzed results, and at 25mm intervals in others;

Dobson [13] reports vertical resolution of 0.3 inches but the profile shown

as Figure 1 of that paper looks much better than 0.3 inches, possibly as good

as 0.03 inches. Attempts had been made to determine mean squared slopes

from the stereo photographs but the results were inconclusive, and the Applied

Physics Laboratory group has doubts about the overall usefulness of stereo

photographic methods because of the cost of the photographic analyses.

The most promising type of experiment would be to fly some sort of

profiling device over the ocean's surface, and the two candidates for this
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would be the laser profilometer or the nanosecond radar of Yaplee's group

at Naval Research Laboratory. The spot size of the radar is approximately

one meter while the average facet length as defined by Schooley is only about

8 cm, so the radar return can come from one or several facets (at least in

terms of this particular model). Because of this, we feel that an appropriate

experiment for the radar is a thorough study of the radar return signal

amplitude as a function of height of the illuminated area of the sea (with

the height measured by non-radar means) as well as correlation of the results

with oceanographic conditions. This series of measurements is best done at a
fixed location. This leaves the laser profilometer to be considered for the

sea state bias problem.

Flying a laser profilometer at low altitude and relatively low speeds
in both upwind-downwind and cross wind directions appears to be the only

currently feasible technique for obtaining the geometric data needed to

attack the sea-state bias problem. Only a portion of the one-dimensional

wave number spectrum can be obtained by this technique, depending on flying

speed and on the profilometer's bandwidth or response time. Figure 6
shows the upper and lower ocean wavelengths detectable as a function of speed

of the profilometer-carrying helicopter or airplane, based on the following

discussion.

We are assuming the following characteristics for the profilometer: spot
size, 2-1/2 cm, height resolution, 1/4 cm, and a bandpass of 0-1000 Hz for
height measurements. (Notice that the height resolution is only A /10 for the

oX-band radar A. and that this is ust n th dge of what is needed on anyo . w,=u is needed on any
kind of facet model basis.) If this is flown at speed v over a stationary
corrugated surface of wavelength A, the minimum A for a given v is fixed by the
1000 Hz limit at Amin = v/(1000 sec-l).

There is also an upper wavelength limit, Xmax set by a requirement that
the profilometer traverse any given wavelength, X, within a time equal to or
less than T/10 where T is the period corresponding to that A. The reason for
this is that unless the record of a wave can be made in a time short compared
to the wave's frequency, it is necessary to take account of the wave's motion
and correct the airplane speed taking account of the relative motion of profil-
ometer and ocean wave. Such a correlation requires use of the phase speed of
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the ocean wave which can be derived approximately from the wave dispersion
2 3 2 3 2

relation w = gk + sk3 where g = 980 cm/sec and s a 74 cm /sec 2 . Our basic

approach is to get the wave number spectrum and surface properties directly

from surface profile data insofar as possible and avoid use of the wave

dispersion relation. The criterion of T/10 is quite arbitrary and is used

here to provide a simple illustration of a typical upper wavelength limit

imposed by a "nearly motionless sea" requirement.

Table I below lists Xin and X as a function of the profilometer speed.mi max
The entries in Table I are taken directly from Figure 6. (We are assuming

the profilometer is translated at a constant speed and constant altitude

above mean sea level, carried by a helicopter or by an aircraft, as appropriate

to the speed finally chosen.)

Table I

Profilometer Speed/km/hr and knots Xmin max

10 km/hr = 5.4 knots 0.66 cm 4.3 cm

50 km/hr = 27 knots . 1.4 cm 130 cm

100 km/hr = 54 knots 2.8 cm 500 cm

300 km/hr = 162 knots 8.4 cm 4200 cm

450 km/hr = 243 knots 13 cm 10000 cm

On the basis of this information, it appears that a speed of about 50 km/hr

would provide the type of information we need. This represents a compromise

which provides two decades of wavelength (or of wave numbers) in the regbn of

high probable interest to the radar problem. Lower speeds yield too stringent

a X limitation due to the "T/10 criterion," while higher speeds limit toomax

severely the Xmin because of the instrument's frequency response. This speed

of 50 km/hr of course assumes the availability of a helicopter to carry the

profilometer. If an airplane only is available, the Xmin becomes higher because

of the profilometer's frequency response.
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It is clear that this proposed experiment is severely straining at the

capabilities of the laser profilometer and that even a modest increase in

both the vertical resolution and the bandpass of the device would greatly

improve the chances of obtaining the data needed for experimentally inves-

tigating ocean surface geometry related to the sea-state bias problem. Even

with the present instrument, this moving profilometer experiment seems the

best hope in attempting to assess the bias problem by geometry measurements.

4.3.2 Pulse Amplitude vs. Time Experiments

We have already discussed the Yaplee experiment as providing the only

experimental data available at this time for the bias problem. There are a

number of open questions concerning this experiment, and the entire body of

data available is still very small; this type of experiment should certainly

be continued. It represents the best chance of getting the needed information,

although the extrapolation of these results to deep water and to satellite

geometry represents a large unknown area at this time.

It is interesting to consider a related experiment using the laser

profilometer. If one argues that the radar scattering processes of interest

to a radar altimeter are described by the class of electromagnetic theories

which assume surface roughness large compared to the incident electromagnetic

wavelength, then the incident laser radiation should serve as a very good

test of these theories, and the laser backscattering cross-section at the

ocean surface should vary in exactly the same manner as does the radar back-

scattering. This is a highly suspect argument since the ratio of laser to

radar wavelength is so high and the illuminated spot size at the ocean surface

so different. Selection of an appropriate spot size is much simpler at optical

frequencies. A record of the laser profilometer's photodetector's output

signal vs. time taken concurrently with the normal profilometer range vs. time

signal might be very valuable. A cross-correlation of these two records would

immediately give optical frequency backscatter cross-section as a function of

sea surface height, leading to estimates of properties of the very high wave

number end of the sea surface spectrum.
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This return light amplitude vs. range experiment could be done at the

same time the profilometer was being flown over the sea surface, or could

be done at the Chesapeake tower with a fixed position profilometer. This

would make a very valuable addition to further experiments with the NRL

nanosecond radar, recording simultaneously the radar return data, the laser

profilometer range output and photodetector output, as well as wave staff

data.

4.3.3 Summary and Conclusion in the Bias Problems

In discussing the sea-state bias problem, we argued that the bias

problem may be restated in terms of the vertical probability density p(z)

describing the "scattering element" distribution about mean sea level and

discussed the relationship of the parameters appearing in rough surface

scattering theories to this p(z); if p(z) is an even function. of z, there

is no sea state bias for a class of trackers including double delay dif-

ferencing and 2:1 weighted split gates. We discussed possible experimental

surface measurements from which p(z) could be found without having to invoke

the wave dispersion relation and concluded that only stereophotographs or

moving profilometer techniques could get the needed information, and that

the laser profilometer was the more promising of these. A flying laser

profilometer can only measure without distortion a limited range of the

entire ocean surface wave number spectrum and we presented the upper and

lower.surface wavelengths measurable for any given flying speed. Finally,
we recommended an experiment correlating the laser profilometer photodetector

output with surface height, and this probably should be done simultaneously

with future Chesapeake light tower experiments using the NRL nanosecond radar.

The bias problem is a most complex one and all promising experimental

approaches should be considered. If further tests can show that the nanosecond

radar is observing individual scattering centers, or that the data can be
suitably compensated, radar data will be of definite value to the bias problem.
Note that it involves a minimum of theoretical assumptions. The laser technique
merits further work and appears to offer the best opportunity for uncovering
basic physical processes involved in the bias problem. Direct measurement of
the bias error is of course recommended using over-water passive or active
radar reflectors, once a satellite radar is in operation.
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4.4 COMMENTS ON STILWELL'S DIRECTIONAL ENERGY SPECTRA OF THE SEA

FROM PHOTOGRAPHS

Although the theoretical analyses presented in Chapter 3 clearly

show that (for the purposes of backscattering computations) the wave

height spectrum can be considered isotropic, such results must be experi-

mentally verified. Therefore, the question of how best to obtain ocean

spectral information is of vital concern to the altimeter program. At

present, the Stilwell technique [8] and the laser profilometer method are

considered to offer the most promising ground truth approaches: other

proven methods for obtaining the wave number spectra such as stereo-

photography are not attractive because of the expense entailed.

This section presents the results of a brief investigation of the

Stilwell technique, which was initiated with the objective of documenting

characteristics of the method and specifying aircraft measurement procedures.

In the course of the investigation, several questionable points in the

Stilwell derivation were uncovered. These are discussed in detail below, in

the order of their occurrence in the original paper. Until these deficiencies

are incorporated into the derivation and the ensuing results shown to be re-

lated to an ocean slope spectrum we must plan on other ground truth methods.

Comment 1

Although the small-slope assumption is almost universally adopted in

wave study, there is a real danger of using it in the present case.

The slope of a single train of waves whose height is given by ((x,t), where

(x,t) = a cos (kx - wt), (1)

is given by

- = - ak sin (kx - wt). (2)
ax

The magnitude of the slope is on the order of (ak) which is always small. How-

ever, for a random wave field, superimposed waves can make this assumption
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questionable. For a random surface, the surface height is a superposition

of all the elemental wave train amplitudes, i.e. ,

(,t) = f dB(,w) ei ' ,  - wt) (3)

k

where dB(,w) is a complex-valued random amplitude function of k and W. In

this case the surface slope is

V (, t) = fikdB( ) ei(  - ct) (4)

k w

Therefore, the slope is on the order of kIkf. This quantity may be small for

all observed }k in studies with emphasis on wave energy since most of the energy

of a random wave field is contained in the low wave number range (see Figure 7.).
However, for wave slope studies, the major contribution comes from the higher

wave number range, hence rIkJ is not necessarily small for all k. The small

slope assumption made by Stilwell seems to need additional study.

Aside

Rpfore prncedinganv further, it w 1il be necessary to develop arelation

ship for the angle (0) between the sun's ray and the vertical axis in terms of

the angle (o) between the sun's ray and the local normal to the rough surface.

Referring to Figure 8, we define the necessary geometrical quantities as follows;

r = unit vector pointing to the camera

n = unit normal to the sea-surface

s = unit vector pointing toward the sun

1, j, k = unit vectors in the x, y and z-directions, respectively

, , Z are coplanar by definition .
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Figure 7. Wave height and slope snectra as a function of wavenumber.
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From Figure 8, the unit vectors r, n and s may be reduced to their equivalent

representation, i.e. ,

r -cosSj + sin@k

n = sinpsini + sincos4'j + cosrk

s = cos n + sino t
00~ o

where t is a unit vector in the plane of r, n, s and perpendicular to n. The

angle 9 is as follows;

-i
9 = cos- s.k)

or

-1
0= cos cosO n.k + sin0o .k (5)

Thus, 0 can be found once the unit vector T is known. The most straightforward

way of finding T is to construct an orthogonal coordinate system comprising n,

T and n*, where n* is perpendicular to n and r or

Bxr

n* = , (6)

From the definitions, it can easily be shown that

n x r = (sinPsincos# + cosvcoso)i - sinpsinosin4j - sinpcosqsin k

and

2 .2 2 2 2 2 2 2
n x r = sin sin 2 + cos pcos + sin pcos 0(l + cos 2)

+ 2sinecosesincospcos .
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The unit vector r is then given by the following

L= X n*

and T.k becomes

-k = - sin2 sino + sincoswcosocos#~ (7)

Substituting (7) in (5), there results

sin0 [ 2
0 = cos- cosocow - sinpsinO + sin cosvcos4cos (8)

which is the desired relation.

Comment 2

The approximation to get from equation (s-4) to (s-5), i.e.,for V small,

0o0 o,0 is inaccurate. To prove this statement, we note that for small P*

equation (8) becomes

0 cosl cos0 - Vsin0 cos

or

;z coslcos(0 + PCs()

and finally

0 * Jo + Ocos# (9)

*Small @ is equivalent to the small slope assumption.
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Thus, we see that the approximation of iOso is only zeroth order and the

actual relation is directionally sensitive. In addition, it is not obvious

that o will be large when compared to pcos4. Equation (9) is only accurate

to linear terms in 9 and should not be used to compute derivatives. To see

this, we note from (8) that

8 = cos - (a) (10)

or

da
d _ d (11)
d P [1 - a2] /2

and

d- cosp% dP3 [A]da d o c o doo [A]
- sin ° 7 cosp - cosoosinP - d

sini x .

S o L2sinocosysine - sin 2cosPcos4

nx r

+ coscos +sincossin

2sinocosocos 2 + 2sin cosocos20(l - cos2

+ 2cos 2 sincoscos# - 2sin psincoscos

where

A = sin 2sino + sinpcos cos cos4'

ino
a = coss cos - Isin 2 sinO + sinscospcoscos
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when 0 is small,

nx rl - cos[l + vtan cos4]

A cpcos4cos4

a( cos# -csino COS4,
0 0

- a2 1/ 2 _sin 0 (1 +Vcot cos ),

and (11) reduces to

doo7L 5 _ + cos + o cotoo(1 + Cos24) + 2tan sin2(

and the approximation used by Stilwell, i.e.,

dO O do
do d '

is not even a valid zeroth order approximation.

Comment 3

Equation (s-6), i.e.,

dpo

d- cos# (13)

is once again only a zeroth order approximation. A more accurate expression may
be derived by noting that

-1
0 cos r.

4-30



or

0o = cos 1  -cososincos# + cosvsinO} 
(14)

and

do cosocospcosl+ sinsin

d { 1 - [cosesingcos - sinocosp] 2 } 1/2

Under the small slope assumption,

df3 2
-- m cos# + ctangsin . (15)

d(

The difference between (13) and (15) is obvious. Since 4 is the angle

between the y axis (which is arbitrary) and the horizontal projection of local

surface normal (see Figure 8), its value is highly variable. When # = or -2
2 2

the leading term vanishes, hence the first order term dominates, especially

when 0 > '

One shortcoming of the zeroth order approximation (13) is that it creates

an artificial blind-zone or false directionality in the derived spectrum since

dEdor 3r= 0 for = 7  3
d(P 2 ' 2

The approximation shown in equation (13) could lead to severe distortion

in a given measurement. Since signal strength depends on surface slope which,

in turn, depends heavily on the high wave number waves; it is observed that
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waves at high wave number tend to spread isotropically. Such observations

are backed up by theoretical analysis (see, for example, Phillips [14]). An
approximation in the form of equation (13) will limit the useful field to a

narrow range.

Comment 4

The expansion in Equation (s-10) is incomplete. Since the photograph

views a finite field,

I(0) = K L(0) r( o )

should at least be 0 dependent. This is easy to see in a simple example.

Let us take a perfectly smooth surface; then p should be identically zero.
By equation (s-10),

I = Io = const.,

however, different reflection zones correspond to different 0 angles. I is
o

therefore altered as shown in Figure 9. Hence, I should be a function of 4
and therefore position. This gradual change of 4 will contribute to the low
wave number end of the spectrum, not as a delta function at origin as the
author claimed. This argument, of course, applies to the cases when p is
not identically zero. A consequence of this argument is to invalidate the
claim at the bottom of Page 1978:

"The light amplitude can be seen to consiftof a constant term plus
a term proportional to the normal angle v of the wave system. The
constant term will transform into a finite aperture equivalent of a
delta function."

Comment 5

Equation (s-12)

dD 1 6D 
(16)d = D) (16)
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is only true for the two-dimensional case, i.e.sline scattering rather than
surface scattering. For the three-dimensional case, the proper relation may
be derived as follows. In order to relate , and ,use of the chain rule

a aD a9

gives

ae0

With 0 as given in equation (10),

act
ae 9 -1 a0" -, cos (a) =21/2

(1 - a) 1/2

To evaluate , knowledge of - is also needed. From equation (14) it can

be shown that for small S,

do 2 2 2do - 1 + p tan 4 cos ,

da

ca-- ino + c osos .

Therefore

2 sin Po cos4 + I3sin Po tano sin2 + cos o (1 + cos

ds-- sin 0o + Scos o cos4

= 2 cos# + 13 tanO sin2 + cot O0 sin2

It is, therefore, obvious that the connecting factor between d and aD
is not a single constant = , rather, it is a complex function.
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